Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(4): 4408-4419, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38231564

RESUMEN

Laser-scribed graphene electrodes (LSGEs) are promising platforms for the development of electrochemical biosensors for point-of-care settings and continuous monitoring and wearable applications. However, the frequent occurrence of biofouling drastically reduces the sensitivity and selectivity of these devices, hampering their sensing performance. Herein, we describe a versatile, low-impedance, and robust antibiofouling interface based on sulfobetaine-zwitterionic moieties. The interface induces the formation of a hydration layer and exerts electrostatic repulsion, protecting the electrode surface from the nonspecific adsorption of various biofouling agents. We demonstrate through electrochemical and microscopy techniques that the modified electrode exhibits outstanding antifouling properties, preserving more than 90% of the original signal after 24 h of exposure to bovine serum albumin protein, HeLa cells, and Escherichia coli bacteria. The promising performance of this antifouling strategy suggests that it is a viable option for prolonging the lifetime of LSGEs-based sensors when operating on complex biological systems.


Asunto(s)
Incrustaciones Biológicas , Técnicas Biosensibles , Grafito , Humanos , Grafito/química , Células HeLa , Impedancia Eléctrica , Porosidad , Albúmina Sérica Bovina/química , Técnicas Biosensibles/métodos , Electrodos , Rayos Láser , Incrustaciones Biológicas/prevención & control , Técnicas Electroquímicas
2.
Nanoscale ; 15(42): 16984-16991, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37830448

RESUMEN

Perovskite/silicon tandem solar cells have a tremendous potential to boost renewable electricity production thanks to their very high performance combined with promising cost structure. However, for actual field deployment, any solar cell technology needs to be assembled into modules, where the associated processes involve several challenges that may affect both the performance and stability of the devices. For instance, due to its hygroscopic nature, ethylene vinyl acetate (EVA) is incompatible with perovskite-based photovoltaics. To circumvent this issue, we investigate here two alternative encapsulant polymers for the packaging of perovskite/silicon tandems into minimodules: a thermoplastic polyurethane (TPU) and a thermoplastic polyolefin (TPO) elastomer. To gauge their impact on tandem-module performance and stability, we performed two internationally established accelerated module stability tests (IEC 61215): damp heat exposure and thermal cycling. Finally, to better understand the thermomechanical properties of the two encapsulants and gain insight into their relation to the thermal cycling of encapsulated tandems, we performed a dynamic mechanical thermal analysis. Our understanding of the packaging process of the tandem module provides useful insights for the development of commercially viable perovskite photovoltaics.

3.
J Colloid Interface Sci ; 553: 540-548, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31234127

RESUMEN

Surface functionalization of silica nanoparticles (SiO2NPs) has been considered as a promising strategy to develop target-specific nanostructures. However, finding a chemical functionalization that can be used as an active targeting moiety while preserving the nanoparticles colloidal stability in biological fluids is still challenging. We present here a dual surface modification strategy for SiO2NPs where a zwitterion (ZW) and a biologically active group (BAG) (amino, mercapto or carboxylic functionalities) are simultaneously grafted on the nanoparticles' surface. The rationale behind this strategy is to generate colloidally stable nanoparticles and avoid the nonspecific protein adsorption due to ZW groups insertion, while the effective interaction with biosystems is guaranteed by the BAGs presence. The biological efficacy was tested against VERO cells, E. coli bacteria and Zika viruses and a similar trend was observed for all tested particles. The desirable "stealth property" to prevent nonspecific protein adhesion also generated a ZW shielding effect of the BAG functionality hindering their proper interaction and activity in cells, bacteria and viruses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA