Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Inorg Chem ; 63(6): 2909-2918, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38301278

RESUMEN

We here report the synthesis of the homoleptic iron(II) N-heterocyclic carbene (NHC) complex [Fe(miHpbmi)2](PF6)4 (miHpbmi = 4-((3-methyl-1H-imidazolium-1-yl)pyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)) and its electrochemical and photophysical properties. The introduction of the π-electron-withdrawing 3-methyl-1H-imidazol-3-ium-1-yl group into the NHC ligand framework resulted in stabilization of the metal-to-ligand charge transfer (MLCT) state and destabilization of the metal-centered (MC) states. This resulted in an improved excited-state lifetime of 16 ps compared to the 9 ps for the unsubstituted parent compound [Fe(pbmi)2](PF6)2 (pbmi = (pyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)) as well as a stronger MLCT absorption band extending more toward the red spectral region. However, compared to the carboxylic acid derivative [Fe(cpbmi)2](PF6)2 (cpbmi = 1,1'-(4-carboxypyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)), the excited-state lifetime of [Fe(miHpbmi)2](PF6)4 is the same, but both the extinction and the red shift are more pronounced for the former. Hence, this makes [Fe(miHpbmi)2](PF6)4 a promising pH-insensitive analogue of [Fe(cpbmi)2](PF6)2. Finally, the excited-state dynamics of the title compound [Fe(miHpbmi)2](PF6)4 was investigated in solvents with different viscosities, however, showing very little dependency of the depopulation of the excited states on the properties of the solvent used.

3.
Inorg Chem ; 63(10): 4461-4473, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38421802

RESUMEN

Two iron complexes featuring the bidentate, nonconjugated N-heterocyclic carbene (NHC) 1,1'-methylenebis(3-methylimidazol-2-ylidene) (mbmi) ligand, where the two NHC moieties are separated by a methylene bridge, have been synthesized to exploit the combined influence of geometric and electronic effects on the ground- and excited-state properties of homoleptic FeIII-hexa-NHC [Fe(mbmi)3](PF6)3 and heteroleptic FeII-tetra-NHC [Fe(mbmi)2(bpy)](PF6)2 (bpy = 2,2'-bipyridine) complexes. They are compared to the reported FeIII-hexa-NHC [Fe(btz)3](PF6)3 and FeII-tetra-NHC [Fe(btz)2(bpy)](PF6)2 complexes containing the conjugated, bidentate mesoionic NHC ligand 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene) (btz). The observed geometries of [Fe(mbmi)3](PF6)3 and [Fe(mbmi)2(bpy)](PF6)2 are evaluated through L-Fe-L bond angles and ligand planarity and compared to those of [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. The FeII/FeIII redox couples of [Fe(mbmi)3](PF6)3 (-0.38 V) and [Fe(mbmi)2(bpy)](PF6)2 (-0.057 V, both vs Fc+/0) are less reducing than [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. The two complexes show intense absorption bands in the visible region: [Fe(mbmi)3](PF6)3 at 502 nm (ligand-to-metal charge transfer, 2LMCT) and [Fe(mbmi)2(bpy)](PF6)2 at 410 and 616 nm (metal-to-ligand charge transfer, 3MLCT). Lifetimes of 57.3 ps (2LMCT) for [Fe(mbmi)3](PF6)3 and 7.6 ps (3MLCT) for [Fe(mbmi)2(bpy)](PF6)2 were probed and are somewhat shorter than those for [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. [Fe(mbmi)3](PF6)3 exhibits photoluminescence at 686 nm (2LMCT) in acetonitrile at room temperature with a quantum yield of (1.2 ± 0.1) × 10-4, compared to (3 ± 0.5) × 10-4 for [Fe(btz)3](PF6)3.

4.
Chem Sci ; 14(37): 10129-10139, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37772113

RESUMEN

Iron N-heterocyclic carbene (FeNHC) complexes with long-lived charge transfer states are emerging as a promising class of photoactive materials. We have synthesized [FeII(ImP)2] (ImP = bis(2,6-bis(3-methylimidazol-2-ylidene-1-yl)phenylene)) that combines carbene ligands with cyclometalation for additionally improved ligand field strength. The 9 ps lifetime of its 3MLCT (metal-to-ligand charge transfer) state however reveals no benefit from cyclometalation compared to Fe(ii) complexes with NHC/pyridine or pure NHC ligand sets. In acetonitrile solution, the Fe(ii) complex forms a photoproduct that features emission characteristics (450 nm, 5.1 ns) that were previously attributed to a higher (2MLCT) state of its Fe(iii) analogue [FeIII(ImP)2]+, which led to a claim of dual (MLCT and LMCT) emission. Revisiting the photophysics of [FeIII(ImP)2]+, we confirmed however that higher (2MLCT) states of [FeIII(ImP)2]+ are short-lived (<10 ps) and therefore, in contrast to the previous interpretation, cannot give rise to emission on the nanosecond timescale. Accordingly, pristine [FeIII(ImP)2]+ prepared by us only shows red emission from its lower 2LMCT state (740 nm, 240 ps). The long-lived, higher energy emission previously reported for [FeIII(ImP)2]+ is instead attributed to an impurity, most probably a photoproduct of the Fe(ii) precursor. The previously reported emission quenching on the nanosecond time scale hence does not support any excited state reactivity of [FeIII(ImP)2]+ itself.

5.
J Am Chem Soc ; 145(35): 19171-19176, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37616472

RESUMEN

Symmetry-breaking charge separation in molecular materials has attracted increasing attention for optoelectronics based on single-material active layers. To this end, Fe(III) complexes with particularly electron-donating N-heterocyclic carbene ligands offer interesting properties with a 2LMCT excited state capable of oxidizing or reducing the complex in its ground state. In this Communication, we show that the corresponding symmetry-breaking charge separation occurs in amorphous films of pristine [Fe(III)L2]PF6 (L = [phenyl(tris(3-methylimidazol-2-ylidene))borate]-). Excitation of the solid material with visible light leads to ultrafast electron transfer quenching of the 2LMCT excited state, generating Fe(II) and Fe(IV) products with high efficiency. Sub-picosecond charge separation followed by recombination in about 1 ns could be monitored by transient absorption spectroscopy. Photoconductivity measurements of films deposited on microelectrode arrays demonstrated that photogenerated charge carriers can be collected at external contacts.

6.
Inorg Chem ; 61(44): 17515-17526, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36279568

RESUMEN

Fe(III) complexes with N-heterocyclic carbene (NHC) ligands belong to the rare examples of Earth-abundant transition metal complexes with long-lived luminescent charge-transfer excited states that enable applications as photosensitizers for charge separation reactions. We report three new hexa-NHC complexes of this class: [Fe(brphtmeimb)2]PF6 (brphtmeimb = [(4-bromophenyl)tris(3-methylimidazol-2-ylidene)borate]-, [Fe(meophtmeimb)2]PF6 (meophtmeimb = [(4-methoxyphenyl)tris(3-methylimidazol-2-ylidene)borate]-, and [Fe(coohphtmeimb)2]PF6 (coohphtmeimb = [(4-carboxyphenyl)tris(3-methylimidazol-2-ylidene)borate]-. These were derived from the parent complex [Fe(phtmeimb)2]PF6 (phtmeimb = [phenyltris(3-methylimidazol-2-ylidene)borate]- by modification with electron-withdrawing and electron-donating substituents, respectively, at the 4-phenyl position of the ligand framework. All three Fe(III) hexa-NHC complexes were characterized by NMR spectroscopy, high-resolution mass spectroscopy, elemental analysis, single crystal X-ray diffraction analysis, electrochemistry, Mößbauer spectroscopy, electronic spectroscopy, magnetic susceptibility measurements, and quantum chemical calculations. Their ligand-to-metal charge-transfer (2LMCT) excited states feature nanosecond lifetimes (1.6-1.7 ns) and sizable emission quantum yields (1.7-1.9%) through spin-allowed transition to the doublet ground state (2GS), completely in line with the parent complex [Fe(phtmeimb)2]PF6 (2.0 ns and 2.1%). The integrity of the favorable excited state characteristics upon substitution of the ligand framework demonstrates the robustness of the scorpionate motif that tolerates modifications in the 4-phenyl position for applications such as the attachment in molecular or hybrid assemblies.

7.
Chem Sci ; 13(32): 9165-9175, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36093023

RESUMEN

Fe-N-heterocyclic carbene (NHC) complexes attract increasing attention as photosensitisers and photoredox catalysts. Such applications generally rely on sufficiently long excited state lifetimes and efficient bimolecular quenching, which leads to there being few examples of successful usage of Fe-NHC complexes to date. Here, we have employed [Fe(iii)(btz)3]3+ (btz = (3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene))) in the addition of alkyl halides to alkenes and alkynes via visible light-mediated atom transfer radical addition (ATRA). Unlike other Fe-NHC complexes, [Fe(iii/ii)(btz)3]3+/2+ benefits from sizable charge transfer excited state lifetimes ≥0.1 ns in both oxidation states, and the Fe(iii) 2LMCT and Fe(ii) 3MLCT states are strong oxidants and reductants, respectively. The combined reactivity of both excited states enables efficient one-electron reduction of the alkyl halide substrate under green light irradiation. The two-photon mechanism proceeds via reductive quenching of the Fe(iii) 2LMCT state by a sacrificial electron donor and subsequent excitation of the Fe(ii) product to its highly reducing 3MLCT state. This route is shown to be more efficient than the alternative, where oxidative quenching of the less reducing Fe(iii) 2LMCT state by the alkyl halide drives the reaction, in the absence of a sacrificial electron donor.

8.
Chem Commun (Camb) ; 58(35): 5351-5354, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35373799

RESUMEN

Herein we report the first high turnover photocatalytic hydrogen formation reaction based on an earth-abundant FeIII-NHC photosensitiser. The reaction occurs via reductive quenching of the 2LMCT excited state that can be directly excited with green light and employs either Pt-colloids or [Co(dmgH)2pyCl] as proton reduction catalysts and [HNEt3][BF4] and triethanolamine/triethylamine as proton and electron donors. The outstanding photostability of the FeIII-NHC complex enables turnover numbers >1000 without degradation.

9.
J Am Chem Soc ; 144(8): 3614-3625, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35184564

RESUMEN

With the price-competitiveness of solar and wind power, hydrogen technologies may be game changers for a cleaner, defossilized, and sustainable energy future. H2 can indeed be produced in electrolyzers from water, stored for long periods, and converted back into power, on demand, in fuel cells. The feasibility of the latter process critically depends on the discovery of cheap and efficient catalysts able to replace platinum group metals at the anode and cathode of fuel cells. Bioinspiration can be key for designing such alternative catalysts. Here we show that a novel class of iron-based catalysts inspired from the active site of [FeFe]-hydrogenase behave as unprecedented bidirectional electrocatalysts for interconverting H2 and protons efficiently under near-neutral aqueous conditions. Such bioinspired catalysts have been implemented at the anode of a functional membrane-less H2/O2 fuel cell device.


Asunto(s)
Hidrogenasas , Proteínas Hierro-Azufre , Catálisis , Dominio Catalítico , Hidrógeno/química , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Protones , Agua
10.
J Am Chem Soc ; 143(29): 10816-10821, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34264638

RESUMEN

Photoinduced symmetry-breaking charge separation (SB-CS) processes offer the possibility of harvesting solar energy by electron transfer between identical molecules. Here, we present the first case of direct observation of bimolecular SB-CS in a transition metal complex, [FeIIIL2](PF6) (L = [phenyl(tris(3-methylimidazol-1-ylidene))borate]-). Photoexcitation of the complex in the visible region results in the formation of a doublet ligand-to-metal charge transfer (2LMCT) excited state (E0-0 = 2.13 eV), which readily reacts with the doublet ground state to generate charge separated products, [FeIIL2] and [FeIVL2]2+, with a measurable cage escape yield. Known spectral signatures allow for unambiguous identification of the products, whose formation and recombination are monitored with transient absorption spectroscopy. The unusual energetic landscape of [FeIIIL2]+, as reflected in its ground and excited state reduction potentials, results in SB-CS being intrinsically exergonic (ΔGCS° ∼ -0.7 eV). This is in contrast to most systems investigated in the literature, where ΔGCS° is close to zero, and the charge transfer driven primarily by solvation effects. The study is therefore illustrative for the utilization of the rich redox chemistry accessible in transition metal complexes for the realization of SB-CS.

11.
Chem Sci ; 12(48): 16035-16053, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35024126

RESUMEN

A new generation of octahedral iron(ii)-N-heterocyclic carbene (NHC) complexes, employing different tridentate C^N^C ligands, has been designed and synthesized as earth-abundant photosensitizers for dye sensitized solar cells (DSSCs) and related solar energy conversion applications. This work introduces a linearly aligned push-pull design principle that reaches from the ligand having nitrogen-based electron donors, over the Fe(ii) centre, to the ligand having an electron withdrawing carboxylic acid anchor group. A combination of spectroscopy, electrochemistry, and quantum chemical calculations demonstrate the improved molecular excited state properties in terms of a broader absorption spectrum compared to the reference complex, as well as directional charge-transfer displacement of the lowest excited state towards the semiconductor substrate in accordance with the push-pull design. Prototype DSSCs based on one of the new Fe NHC photosensitizers demonstrate a power conversion efficiency exceeding 1% already for a basic DSSC set-up using only the I-/I3 - redox mediator and standard operating conditions, outcompeting the corresponding DSSC based on the homoleptic reference complex. Transient photovoltage measurements confirmed that adding the co-sensitizer chenodeoxycholic acid helped in improving the efficiency by increasing the electron lifetime in TiO2. Time-resolved spectroscopy revealed spectral signatures for successful ultrafast (<100 fs) interfacial electron injection from the heteroleptic dyes to TiO2. However, an ultrafast recombination process results in undesirable fast charge recombination from TiO2 back to the oxidized dye, leaving only 5-10% of the initially excited dyes available to contribute to a current in the DSSC. On slower timescales, time-resolved spectroscopy also found that the recombination dynamics (longer than 40 µs) were significantly slower than the regeneration of the oxidized dye by the redox mediator (6-8 µs). Therefore it is the ultrafast recombination down to fs-timescales, between the oxidized dye and the injected electron, that remains as one of the main bottlenecks to be targeted for achieving further improved solar energy conversion efficiencies in future work.

12.
Chemistry ; 26(56): 12728-12732, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-32369645

RESUMEN

A homoleptic organometallic FeIV complex that is stable in both solution and in the solid state at ambient conditions has been synthesized and isolated as [Fe(phtmeimb)2 ](PF6 )2 (phtmeimb=[phenyl(tris(3-methylimidazolin-2-ylidene))borate]- ). This FeIV N-heterocyclic carbene (NHC) complex was characterized by 1 H NMR, HR-MS, elemental analysis, scXRD analysis, electrochemistry, Mößbauer spectroscopy, and magnetic susceptibility. The two latter techniques unequivocally demonstrate that [Fe(phtmeimb)2 ](PF6 )2 is a triplet FeIV low-spin S=1 complex in the ground state, in agreement with quantum chemical calculations. The electronic absorption spectrum of [Fe(phtmeimb)2 ](PF6 )2 in acetonitrile shows an intense absorption band in the red and near IR, due to LMCT (ligand-to-metal charge transfer) excitation. For the first time the excited state dynamics of a FeIV complex was studied and revealed a ≈0.8 ps lifetime of the 3 LMCT excited state of [Fe(phtmeimb)2 ](PF6 )2 in acetonitrile.

13.
ACS Appl Mater Interfaces ; 12(4): 4501-4509, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31872996

RESUMEN

A facile surface amide-coupling method was examined to attach dye and catalyst molecules to silatrane-decorated NiO electrodes. Using this method, electrodes with a push-pull dye were assembled and characterized by photoelectrochemistry and transient absorption spectroscopy. The dye-sensitized electrodes exhibited hole injection into NiO and good photoelectrochemical stability in water, highlighting the stability of the silatrane anchoring group and the amide linkage. The amide-coupling protocol was further applied to electrodes that contain a molecular proton reduction catalyst for use in photocathode architectures. Evidence for catalyst reduction was observed during photoelectrochemical measurements and via femtosecond-transient absorption spectroscopy demonstrating the possibility for application in photocathodes.

14.
Chem Sci ; 10(21): 5582-5588, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31293742

RESUMEN

Electron and proton transfer reactions of diiron complexes [Fe2adt(CO)6] (1) and [Fe2adt(CO)4(PMe3)2] (4), with the biomimetic azadithiolate (adt) bridging ligand, have been investigated by real-time IR- and UV-vis-spectroscopic observation to elucidate the role of the adt-N as a potential proton shuttle in catalytic H2 formation. Protonation of the one-electron reduced complex, 1- , occurs on the adt-N yielding 1H and the same species is obtained by one-electron reduction of 1H+ . The preference for ligand vs. metal protonation in the Fe2(i,0) state is presumably kinetic but no evidence for tautomerization of 1H to the hydride 1Hy was observed. This shows that the adt ligand does not work as a proton relay in the formation of hydride intermediates in the reduced catalyst. A hydride intermediate 1HHy+ is formed only by protonation of 1H with stronger acid. Adt protonation results in reduction of the catalyst at much less negative potential, but subsequent protonation of the metal centers is not slowed down, as would be expected according to the decrease in basicity. Thus, the adtH+ complex retains a high turnover frequency at the lowered overpotential. Instead of proton shuttling, we propose that this gain in catalytic performance compared to the propyldithiolate analogue might be rationalized in terms of lower reorganization energy for hydride formation with bulk acid upon adt protonation.

15.
Chemistry ; 25(47): 11135-11140, 2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31210385

RESUMEN

[FeFe(Cl2 -bdt)(CO)6 ] (1; Cl2 -bdt=3,6-dichlorobenzene-1,2-dithiolate), inspired by the active site of FeFe-hydrogenase, shows a chemically reversible 2 e- reduction at -1.20 V versus the ferrocene/ferrocenium couple. The rigid and aromatic bdt bridging ligand lowers the reduction potential and stabilizes the reduced forms, compared with analogous complexes with aliphatic dithiolates; thus allowing details of the catalytic process to be characterized. Herein, time-resolved IR spectroscopy is used to provide kinetic and structural information on key catalytic intermediates. This includes the doubly reduced, protonated complex 1H- , which has not been previously identified experimentally. In addition, the first direct spectroscopic observation of the turnover process for a molecular H2 evolving catalyst is reported, allowing for straightforward determination of the turnover frequency.

16.
Science ; 363(6424): 249-253, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30498167

RESUMEN

Iron's abundance and rich coordination chemistry are potentially appealing features for photochemical applications. However, the photoexcitable charge-transfer states of most iron complexes are limited by picosecond or subpicosecond deactivation through low-lying metal-centered states, resulting in inefficient electron-transfer reactivity and complete lack of photoluminescence. In this study, we show that octahedral coordination of iron(III) by two mono-anionic facial tris-carbene ligands can markedly suppress such deactivation. The resulting complex [Fe(phtmeimb)2]+, where phtmeimb is {phenyl[tris(3-methylimidazol-1-ylidene)]borate}-, exhibits strong, visible, room temperature photoluminescence with a 2.0-nanosecond lifetime and 2% quantum yield via spin-allowed transition from a doublet ligand-to-metal charge-transfer (2LMCT) state to the doublet ground state. Reductive and oxidative electron-transfer reactions were observed for the 2LMCT state of [Fe(phtmeimb)2]+ in bimolecular quenching studies with methylviologen and diphenylamine.

17.
Nat Chem ; 10(8): 881-887, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30013192

RESUMEN

Metal hydrides are key intermediates in catalytic proton reduction and dihydrogen oxidation. There is currently much interest in appending proton relays near the metal centre to accelerate catalysis by proton-coupled electron transfer (PCET). However, the elementary PCET steps and the role of the proton relays are still poorly understood, and direct kinetic studies of these processes are scarce. Here, we report a series of tungsten hydride complexes as proxy catalysts, with covalently attached pyridyl groups as proton acceptors. The rate of their PCET reaction with external oxidants is increased by several orders of magnitude compared to that of the analogous systems with external pyridine on account of facilitated proton transfer. Moreover, the mechanism of the PCET reaction is altered by the appended bases. A unique feature is that the reaction can be tuned to follow three distinct PCET mechanisms-electron-first, proton-first or a concerted reaction-with very different sensitivities to oxidant and base strength. Such knowledge is crucial for rational improvements of solar fuel catalysts.

18.
Inorg Chem ; 57(2): 768-776, 2018 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-29297686

RESUMEN

One-electron reduction and subsequent protonation of a biomimetic proton-reduction catalyst [FeFe(µ-pdt)(CO)6] (pdt = propanedithiolate), 1, were investigated by UV-vis and IR spectroscopy on a nano- to microsecond time scale. The study aimed to provide further insight into the proton-reduction cycle of this [FeFe]-hydrogenase model complex, which with its prototypical alkyldithiolate-bridged diiron core is widely employed as a molecular, precious metal-free catalyst for sustainable H2 generation. The one-electron-reduced catalyst was obtained transiently by electron transfer from photogenerated [Ru(dmb)3]+ in the absence of proton sources or in the presence of acids (dichloro- or trichloroacetic acid or tosylic acid). The reduced catalyst and its protonation product were observed in real time by UV-vis and IR spectroscopy, leading to their structural characterization and providing kinetic data on the electron and proton transfer reactions. 1 features an intact (µ2,κ2-pdt)(µ-H)Fe2 core in the reduced, 1-, and reduced-protonated states, 1H, in contrast to the Fe-S bond cleavage upon the reduction of [FeFe(bdt)(CO)6], 2, with a benzenedithiolate bridge. The driving-force dependence of the rate constants for the protonation of 1- (kpt = 7.0 × 105, 1.3 × 107, and 7.0 × 107 M-1 s-1 for the three acids used in this study) suggests a reorganization energy >1 eV and indicates that hydride complex 1H is formed by direct protonation of the Fe-Fe bond. The protonation of 1- is sufficiently fast even with the weaker acids, which excludes a rate-limiting role in light-driven H2 formation under typical conditions.

19.
J Phys Chem Lett ; 9(3): 459-463, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29298063

RESUMEN

The iron carbene complex [FeII(btz)3](PF6)2 (where btz = 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene)) has been synthesized, isolated, and characterized as a low-spin ferrous complex. It exhibits strong metal-to-ligand charge transfer (MLCT) absorption bands throughout the visible spectrum, and excitation of these bands gives rise to a 3MLCT state with a 528 ps excited-state lifetime in CH3CN solution that is more than one order of magnitude longer compared with the MLCT lifetime of any previously reported FeII complex. The low potential of the [Fe(btz)3]3+/[Fe(btz)3]2+ redox couple makes the 3MLCT state of [FeII(btz)3]2+ a potent photoreductant that can be generated by light absorption throughout the visible spectrum. Taken together with our recent results on the [FeIII(btz)3]3+ form of this complex, these results show that the FeII and FeIII oxidation states of the same Fe(btz)3 complex feature long-lived MLCT and LMCT states, respectively, demonstrating the versatility of iron N-heterocyclic carbene complexes as promising light-harvesters for a broad range of oxidizing and reducing conditions.

20.
Nature ; 543(7647): 695-699, 2017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28358064

RESUMEN

Transition-metal complexes are used as photosensitizers, in light-emitting diodes, for biosensing and in photocatalysis. A key feature in these applications is excitation from the ground state to a charge-transfer state; the long charge-transfer-state lifetimes typical for complexes of ruthenium and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron and copper being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs, it remains a formidable scientific challenge to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(iii) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...