Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935700

RESUMEN

Chiral three-dimensional (3D) perovskites exhibit exceptional optoelectronic characteristics and inherent chiroptical activity, which may overcome the limitations of low-dimensional chiral optoelectronic devices and achieve superior performance. The integrated chip of high-performance arbitrary polarized light detection is one of the aims of chiral optoelectronic devices and may be achieved by chiral 3D perovskites. Herein, we first fabricate the wafer-scale integrated full-Stokes polarimeter by the synergy of unprecedented chiral 3D perovskites (R/S-PyEA)Pb2Br6 and one-step capillary-bridge assembly technology. Compared with the chiral low-dimensional perovskites, chiral 3D perovskites present smaller exciton binding energies of 57.3 meV and excellent circular dichroism (CD) absorption properties, yielding excellent circularly polarized light (CPL) photodetectors with an ultrahigh responsivity of 86.7 A W-1, an unprecedented detectivity exceeding 4.84 × 1013 Jones, a high anisotropy factor of 0.42, and high-fidelity CPL imaging with 256 pixels. Moreover, the anisotropic crystal structure also enables chiral 3D perovskites to have a large linear-polarization response with a polarized ratio of 1.52. The combination of linear-polarization and circular-polarization discrimination capabilities guarantees the achievement of a full-Stokes polarimeter. Our study provides new research insights for the large-scale patterning wafer integration of high-performance chiroptical devices.

2.
Angew Chem Int Ed Engl ; : e202407355, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837587

RESUMEN

The structure of molecular aggregates is crucial for charge transport and photovoltaic performance in organic solar cells (OSCs). Herein, the intermolecular interactions and aggregated structures of nonfused-ring electron acceptors (NFREAs) are precisely regulated through a halogen transposition strategy, resulting in a noteworthy transformation from a 2D-layered structure to a 3D-interconnected packing network. Based on the 3D electron transport pathway, the binary and ternary devices deliver outstanding power conversion efficiencies (PCEs) of 17.46% and 18.24%, respectively, marking the highest value for NFREA-based OSCs.

3.
Small ; : e2401054, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488748

RESUMEN

2D conjugated extension on central units of small molecular acceptors (SMAs) has gained great successes in reaching the state-of-the-art organic photovoltaics. Whereas the limit size of 2D central planes and their dominant role in constructing 3D intermolecular packing networks are still elusive. Thus, by exploring a series of SMAs with gradually enlarged central planes, it is demonstrated that, at both single molecular and aggerated levels, there is an unexpected blue-shift for their film absorption but preferable reorganization energies, exciton lifetimes and binding energies with central planes enlarging, especially when comparing to their Y6 counterpart. More importantly, the significance of well-balanced molecular packing modes involving both central and end units is first disclosed through a systematic single crystal analysis, indicating that when the ratio of central planes area/end terminals area is no more than 3 likely provides a preferred 3D intermolecular packing network of SMAs. By exploring the limit size of 2D central planes, This work indicates that the structural profiles of ideal SMAs may require suitable central unit size together with proper heteroatom replacement instead of directly overextending 2D central planes to the maximum. These results will likely provide some guidelines for future better molecular design.

4.
Molecules ; 29(6)2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38542866

RESUMEN

The development of effective inhibitors targeting the Kirsten rat sarcoma viral proto-oncogene (KRASG12D) mutation, a prevalent oncogenic driver in cancer, represents a significant unmet need in precision medicine. In this study, an integrated computational approach combining structure-based virtual screening and molecular dynamics simulation was employed to identify novel noncovalent inhibitors targeting the KRASG12D variant. Through virtual screening of over 1.7 million diverse compounds, potential lead compounds with high binding affinity and specificity were identified using molecular docking and scoring techniques. Subsequently, 200 ns molecular dynamics simulations provided critical insights into the dynamic behavior, stability, and conformational changes of the inhibitor-KRASG12D complexes, facilitating the selection of lead compounds with robust binding profiles. Additionally, in silico absorption, distribution, metabolism, excretion (ADME) profiling, and toxicity predictions were applied to prioritize the lead compounds for further experimental validation. The discovered noncovalent KRASG12D inhibitors exhibit promises as potential candidates for targeted therapy against KRASG12D-driven cancers. This comprehensive computational framework not only expedites the discovery of novel KRASG12D inhibitors but also provides valuable insights for the development of precision treatments tailored to this oncogenic mutation.


Asunto(s)
Simulación de Dinámica Molecular , Neoplasias , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Simulación del Acoplamiento Molecular , Mutación
5.
Angew Chem Int Ed Engl ; 63(21): e202400769, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38544401

RESUMEN

Generating circularly polarized luminescence (CPL) with simultaneous high photoluminescence quantum yield (PLQY) and dissymmetry factor (glum) is difficult due to usually unmatched electric transition dipole moment (µ) and magnetic transition dipole moment (m) of materials. Herein we tackle this issue by playing a "cascade cationic insertion" trick to achieve strong CPL (with PLQY of ~100 %) in lead-free metal halides with high glum values reaching -2.3×10-2 without using any chiral inducers. Achiral solvents of hydrochloric acid (HCl) and N, N-dimethylformamide (DMF) infiltrate the crystal lattice via asymmetric hydrogen bonding, distorting the perovskite structure to induce the "intrinsic" chirality. Surprisingly, additional insertion of Cs+ cation to substitute partial (CH3)2NH2 + transforms the chiral space group to achiral but the crystal maintains chiroptical activity. Further doping of Sb3+ stimulates strong photoluminescence as a result of self-trapped excitons (STEs) formation without disturbing the crystal framework. The chiral perovskites of indium-antimony chlorides embedded on LEDs chips demonstrate promising potential as CPL emitters. Our work presents rare cases of chiroptical activity of highly luminescent perovskites from only achiral building blocks via spontaneous resolution as a result of symmetry breaking.

6.
Adv Mater ; 36(23): e2401370, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38373399

RESUMEN

Achieving desirable charge-transport highway is of vital importance for high-performance organic solar cells (OSCs). Here, it is shown how molecular packing arrangements can be regulated via tuning the alkyl-chain topology, thus resulting in a 3D network stacking and highly interconnected pathway for electron transport in a simple-structured nonfused-ring electron acceptor (NFREA) with branched alkyl side-chains. As a result, a record-breaking power conversion efficiency of 17.38% (certificated 16.59%) is achieved for NFREA-based devices, thus providing an opportunity for constructing low-cost and high-efficiency OSCs.

7.
Angew Chem Int Ed Engl ; 63(10): e202318143, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38190621

RESUMEN

In the development of high-performance organic solar cells (OSCs), the self-organization of organic semiconductors plays a crucial role. This study focuses on the precisely manipulation of molecular assemble via tuning alkyl side-chain topology in a series of low-cost nonfused-ring electron acceptors (NFREAs). Among the three NFREAs investigated, DPA-4, which possesses an asymmetric alkyl side-chain length, exhibits a tight packing in the crystal and high crystallinity in the film, contributing to improved electron mobility and favorable film morphology for DPA-4. As a result, the OSC device based on DPA-4 achieves an excellent power conversion efficiency of 16.67 %, ranking among the highest efficiencies for NFREA-based OSCs.

8.
Angew Chem Int Ed Engl ; 62(49): e202311686, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37858963

RESUMEN

Two exotic 6-cantilever small molecular platforms, characteristic of quite different molecular configurations of propeller and quasi-plane, are established by extremely two-dimensional conjugated extension. When applied in small molecular acceptors, the only two cases of CH25 and CH26 that could contain six terminals and such broad conjugated backbones have been afforded thus far, rendering featured absorptions, small reorganization and exciton binding energies. Moreover, their distinctive but completely different molecular geometries result in sharply contrasting nanoscale film morphologies. Finally, CH26 contributes to the best device efficiency of 15.41 % among acceptors with six terminals, demonstrating two pioneered yet highly promising 6-cantilever molecular innovation platforms.

9.
Angew Chem Int Ed Engl ; 62(44): e202312630, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37704576

RESUMEN

Due to the intrinsically flexible molecular skeletons and loose aggregations, organic semiconductors, like small molecular acceptors (SMAs) in organic solar cells (OSCs), greatly suffer from larger structural/packing disorders and weaker intermolecular interactions comparing to their inorganic counterparts, further leading to hindered exciton diffusion/dissociation and charge carrier migration in resulting OSCs. To overcome this challenge, complete peripheral fluorination was performed on basis of a two-dimensional (2D) conjugation extended molecular platform of CH-series SMAs, rendering an acceptor of CH8F with eight fluorine atoms surrounding the molecular backbone. Benefitting from the broad 2D backbone, more importantly, strengthened fluorine-induced secondary interactions, CH8F and its D18 blends afford much enhanced and more ordered molecular packings accompanying with enlarged dielectric constants, reduced exciton binding energies and more obvious fibrillary networks comparing to CH6F controls. Consequently, D18:CH8F-based OSCs reached an excellent efficiency of 18.80 %, much better than that of 17.91 % for CH6F-based ones. More excitingly, by employing D18-Cl that possesses a highly similar structure to D18 as a third component, the highest efficiency of 19.28 % for CH-series SMAs-based OSCs has been achieved so far. Our work demonstrates the dramatical structural multiformity of CH-series SMAs, meanwhile, their high potential for constructing record-breaking OSCs through peripheral fine-tuning.

10.
Angew Chem Int Ed Engl ; 62(41): e202309600, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37610865

RESUMEN

Due to the pronounced anisotropic response to circularly polarized light, chiral hybrid organic-inorganic metal halides have been regarded as promising candidates for the application in nonlinear chiroptics, especially for the second-harmonic generation circular dichroism (SHG-CD) effect. However, designing novel lead-free chiral hybrid metal halides with large anisotropy factors and high laser-induced damage thresholds (LDT) of SHG-CD remains challenging. Herein, we develop the first chiral hybrid germanium halide, (R/S-NEA)3 Ge2 I7 ⋅H2 O (R/S-NGI), and systematically investigated its linear and nonlinear chiroptical properties. S-NGI and R-NGI exhibit large anisotropy factors (gSHG-CD ) of 0.45 and 0.48, respectively, along with a high LDT of 38.46 GW/cm2 ; these anisotropy factors were the highest values among the reported lead-free chiral hybrid metal halides. Moreover, the effective second-order nonlinear optical coefficient of S-NGI could reach up to 0.86 pm/V, which was 2.9 times higher than that of commercial Y-cut quartz. Our findings facilitate a new avenue toward lead-free chiral hybrid metal halides, and their implementation in nonlinear chiroptical applications.

11.
Nat Commun ; 14(1): 4707, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543678

RESUMEN

Given that bromine possesses similar properties but extra merits of easily synthesizing and polarizing comparing to homomorphic fluorine and chlorine, it is quite surprising very rare high-performance brominated small molecule acceptors have been reported. This may be caused by undesirable film morphologies stemming from relatively larger steric hindrance and excessive crystallinity of bromides. To maximize the advantages of bromides while circumventing weaknesses, three acceptors (CH20, CH21 and CH22) are constructed with stepwise brominating on central units rather than conventional end groups, thus enhancing intermolecular packing, crystallinity and dielectric constant of them without damaging the favorable intermolecular packing through end groups. Consequently, PM6:CH22-based binary organic solar cells render the highest efficiency of 19.06% for brominated acceptors, more excitingly, a record-breaking efficiency of 15.70% when further thickening active layers to ~500 nm. By exhibiting such a rare high-performance brominated acceptor, our work highlights the great potential for achieving record-breaking organic solar cells through delicately brominating.

12.
ACS Nano ; 17(10): 9611-9621, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37166018

RESUMEN

Metal-octaaminophthalocyanine (MOAPc)-based 2D conductive metal-organic frameworks (cMOFs) have shown great potential in several applications, including sensing, energy storage, and electrocatalysis, due to their bimetallic characteristics. Here, we report a detailed metal substitution study on a family of isostructural cMOFs with Co2+, Ni2+, and Cu2+ as both the metal nodes and the metal centers in the MOAPc ligands. We observed that different metal nodes had variations in the reaction kinetics, particle sizes, and crystallinities. Importantly, the electronic structure and conductivity were found to be dependent on both types of metal sites in the 2D cMOFs. Ni-NiOAPc was found to be the most conductive one among the nine possible combinations with a conductivity of 54 ± 4.8 mS/cm. DFT calculations revealed that monolayer Ni-NiOAPc has neither the smallest bandgap nor the highest charge carrier mobility. Hence its highest conductivity stems from its high crystallinity. Collectively, these results provide structure property relationships for MOAPc-based cMOFs with amino coordination units.

13.
Light Sci Appl ; 12(1): 75, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36935450

RESUMEN

Lead-free halide perovskite materials possess low toxicity, broadband luminescence and robust stability compared with conventional lead-based perovskites, thus holding great promise for eyes-friendly white light LEDs. However, the traditionally used preparation methods with a long period and limited product yield have curtailed the commercialization of these materials. Here we introduce a universal hydrochloric acid-assistant powder-to-powder strategy which can accomplish the goals of thermal-, pressure-free, eco-friendliness, short time, low cost and high product yield, simultaneously. The obtained Cs2Na0.9Ag0.1In0.95Bi0.05Cl6 microcrystals exhibit bright self-trapped excitons emission with quantum yield of (98.3 ± 3.8)%, which could retain (90.5 ± 1.3)% and (96.8 ± 0.8)% after continuous heating or ultraviolet-irradiation for 1000 h, respectively. The phosphor converted-LED exhibited near-unity conversion efficiency from ultraviolet chip to self-trapped excitons emission at ~200 mA. Various ions doping (such as Cs2Na0.9Ag0.1InCl6:Ln3+) and other derived lead-free perovskite materials (such as Cs2ZrCl6 and Cs4MnBi2Cl12) with high luminous performance are all realized by our proposed strategy, which has shown excellent availability towards commercialization.

14.
Adv Mater ; 35(17): e2210836, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36744546

RESUMEN

2D Ruddlesden-Popper (2D RP) perovskite, with attractive environmental and structural stability, has shown great application in perovskite solar cells (PSCs). However, the relatively inferior photovoltaic efficiencies of 2D PSCs limit their further application. To address this issue, ß-​fluorophenylethanamine (ß-​FPEA) as a novel spacer cation is designed and employed to develop stable and efficient quasi-2D RP PSCs. The strong dipole moment of the ß-​FPEA enhances the interactions between the cations and [PbI6 ]4- octahedra, thus improving the charge dissociation of quasi-2D RP perovskite. Additionally, the introduction of the ß-​FPEA cation optimizes the energy level alignment, improves the crystallinity, stabilizes both the mixed phase and a-FAPbI3 phase of the quasi-2D RP perovskite film, prolongs the carrier diffusion length, increases the carrier lifetime and decreases the trap density. By incorporating the ß-​FPEA, the quasi-2D RP PSCs exhibit a power conversion efficiency (PCE) of 16.77% (vs phenylethylammonium (PEA)-based quasi-2D RP PSCs of 12.81%) on PEDOT:PSS substrate and achieve a champion PCE of 19.11% on the PTAA substrate. It is worth noting that the unencapsulated ß-​FPEA-based quasi-2D RP PSCs exhibit considerably improved thermal and moisture stability. These findings provide an effective strategy for developing novel spacer cations for high-performance 2D RP PSCs.

15.
Chemistry ; 29(26): e202300029, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36806228

RESUMEN

Deep red/near-infrared (NIR, >650 nm) emissive organic luminophores with aggregation-induced emission (AIE) behaviours have emerged as promising candidates for applications in optoelectronic devices and biological fields. However, the molecular design philosophy for AIE luminogens (AIEgens) with narrow band gaps are rarely explored. Herein, we rationally designed two red organic luminophores, FITPA and FIMPA, by considering the enlargement of transition dipole moment in the charge-transfer state and the transformation from aggregation-caused quenching (ACQ) to AIE. The transition dipole moments were effectively enhanced with a "V-shaped" molecular configuration. Meanwhile, the ACQ-to-AIE transformation from FITPA to FIMPA was induced by a methoxy-substitution strategy. The experimental and theoretical results demonstrated that the ACQ-to-AIE transformation originated from a crystallization-induced emission (CIE) effect because of additional weak interactions in the aggregate state introduced by methoxy groups. Owing to the enhanced transition dipole moment and AIE behaviour, FIMPA presented intense luminescence covering the red-to-NIR region, with a photoluminescence quantum yield (PLQY) of up to 38 % in solid state. The promising cell-imaging performance further verified the great potential of FIMPA in biological applications. These results provide a guideline for the development of red and NIR AIEgens through comprehensive consideration of both the effect of molecular structure and molecular interactions in aggregate states.

16.
Angew Chem Int Ed Engl ; 62(13): e202300800, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36720713

RESUMEN

It is challenging to design one non-noble material with balanced bifunctional performance for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for commercial sustainability at a low cost since the different electrocatalytic mechanisms are not easily matchable for each other. Herein, a self-standing hybrid system Ni18 Fe12 Al70 , consisting of Ni2 Al3 and Ni3 Fe phases, was constructed by laser-assisted aluminum (Al) incorporation towards full water splitting. It was found that the incorporation of Al could effectively tune the morphologies, compositions and phases. The results indicate that Ni18 Fe12 Al70 delivers an extremely low overpotential to trigger both HER (η100 =188 mV) and OER (η100 =345 mV) processes and maintains a stable overpotential for 100 h, comparable to state-of-the-art electrocatalysts. The synergistic effect of Ni2 Al3 and Ni3 Fe alloys on the HER process is confirmed based on theoretical calculation.

17.
ACS Nano ; 16(11): 19439-19450, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36288432

RESUMEN

A 2D van der Waals (vdW) magnet can get rid of the constraints of lattice matching and compatibility and then create a variety of vdW heterostructures, which provides a opportunity for spintronic devices. However, the ability to reliably exfoliate large, high-quality vdW ferromagnetic Fe3GeTe2 (FGT) nanoflakes in scaled-up production is severely limited. Herein, an efficient and stable three-stage sonication-assisted liquid-phase exfoliation was developed for mass preparation of high-structural-integrity few- and single-layer FGT nanoflakes with a greatly enhanced intrinsic exchange bias. The three stages include slicing crystals, weakening interlayer vdW forces, and using ultrasonic cavitation. The highest yield of FGT nanoflakes is 22.3 wt % with single layers accounting for 6%. The size is controllable, and several micrometers, tens of micrometers, and a maximum of 103 µm are available. The 200 mg level output has overcome the limitations of mechanical exfoliation and molecular beam epitaxy in economically amplificated production. An intrinsic exchange bias is observed in the restacked nanoflakes due to the magnetic proximity on the interface of the FGT/natural surface oxide layer. The material reaches 578 Oe (2 K) and 2300 Oe after further oxidation, at least 250% higher than other precisely tailored vdW magnetic heterostructures. In addition, the unusual semiconductivity of the liquid-phase exfoliated FGT nanoflakes is reported. This work skillfully utilizes oxidation to enhance the potential of FGT for large-scale spintronics, optoelectronics, efficient data storage, and various extended applications, and it is beneficial for exfoliating other promising magnetic vdW materials.

18.
Molecules ; 27(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35744866

RESUMEN

By performing first-principles calculations, we studied hexagonal-boron-nitride (hBN)-supported graphene, in which moiré structures are formed due to lattice mismatch or interlayer rotation. A series of graphene/hBN systems has been studied to reveal the evolution of properties with respect to different twisting angles (21.78°, 13.1°, 9.43°, 7.34°, 5.1°, and 3.48°). Although AA- and AB-stacked graphene/hBN are gapped at the Dirac point by about 50 meV, the energy gap of the moiré graphene/hBN, which is much more asymmetric, is only about several meV. Although the Dirac cone of graphene residing in the wide gap of hBN is not much affected, the calculated Fermi velocity is found to decrease with the increase in the moiré super lattice constant due to charge transfer. The periodic potential imposed by hBN modulated charge distributions in graphene, leading to the shift of graphene bands. In agreement with experiments, there are dips in the calculated density of states, which get closer and closer to the Fermi energy as the moiré lattice grows larger.

19.
Chemistry ; 28(39): e202201176, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35509241

RESUMEN

High performance solution processable n-type organic semiconductor is an essential element to realize low-cost, all organic and flexible composite logic circuits. In the design of n-type semiconducting materials, tuning the LUMO level of compounds is a key point. As a strong electron withdrawing unit, the introduction of chlorine atom into the chemical structure can increase the electron affinity of the material and reduce the LUMO energy level. Here, a series chlorine substituted N-heteroacene analogues of 6,7,8,9-tetrachloro-4,11-bis(4-((2-ethylhexyl)oxy)phenyl)-[1,2,5]thiadiazolo[3,4-b]phenazine (O4Cl), 6,7,8,9-tetrachloro-4,11-bis(4-((2-ethylhexyl)thio)phenyl)-[1,2,5]thiadiazolo[3,4-b]phenazine (S4Cl), 1,2,3,4,8,9,10,11-octachloro-6,13-bis(4-((2-ethylhexyl)oxy)phenyl)quinoxalino[2,3-b]phenazine (8Cl) and 12Cl have been synthesized and characterized. Solution-processed organic field-effect transistors (OFETs) based on these four compounds exhibit good electron mobilities of 0.04 cm2  V-1 s-1 , 0.01 cm2  V-1 s-1 , 2×10-3  cm2  V-1 s-1 and 3×10-3  cm2  V-1 s-1 , respectively, under ambient conditions. The results suggest that these chlorine substituted π-conjugated N-heteroacene analogues are promising n-type semiconductors in OFET applications.

20.
Nat Commun ; 13(1): 1551, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322031

RESUMEN

Recent attempts to synthesize hybrid perovskites with large chirality have been hampered by large size mismatch and weak interaction between their structure and the wavelength of light. Here we adopt a planar nanostructure design to overcome these limitations and realize all-dielectric perovskite metasurfaces with giant superstructural chirality. We identify a direct spectral correspondence between the near- and the far- field chirality, and tune the electric and magnetic multipole moments of the resonant chiral metamolecules to obtain large anisotropy factor of 0.49 and circular dichroism of 6350 mdeg. Simulations show that larger area metasurfaces could yield even higher optical activity, approaching the theoretical limits. Our results clearly demonstrate the advantages of nanostructrure engineering for the implementation of perovskite chiral photonic, optoelectronic, and spintronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...