Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 88
1.
Arch Virol ; 169(6): 124, 2024 May 16.
Article En | MEDLINE | ID: mdl-38753064

Allamanda cathartica is an ornamental medicinal plant that grows widely in the tropics. In the present study, two novel viruses, Allamanda chlorotic virus A (AlCVA) and Allamanda chlorotic virus B (AlCVB), were identified in an A. cathartica plant with interveinal chlorosis by ribosomal RNA-depleted total-RNA sequencing. Phylogenetic analysis and sequence comparisons confirmed that AlCVA and AlCVB belong to the families Closteroviridae and Betaflexiviridae, respectively. Long, flexuous, filamentous virus particles approximately 12 nm in diameter and 784-2291 nm in length were observed using transmission electron microscopy. A specific RT-PCR assay was used to demonstrate a consistent association of viral infection with symptoms.


Closteroviridae , Flexiviridae , Phylogeny , Plant Diseases , RNA, Viral , Plant Diseases/virology , China , RNA, Viral/genetics , Closteroviridae/genetics , Closteroviridae/isolation & purification , Closteroviridae/classification , Flexiviridae/genetics , Flexiviridae/isolation & purification , Flexiviridae/classification , Genome, Viral/genetics , Plants, Medicinal/virology
2.
New Phytol ; 242(1): 262-277, 2024 Apr.
Article En | MEDLINE | ID: mdl-38332248

Plants are simultaneously attacked by different pests that rely on sugars uptake from plants. An understanding of the role of plant sugar allocation in these multipartite interactions is limited. Here, we characterized the expression patterns of sucrose transporter genes and evaluated the impact of targeted transporter gene mutants and brown planthopper (BPH) phloem-feeding and oviposition on root sugar allocation and BPH-reduced rice susceptibility to Meloidogyne graminicola. We found that the sugar transporter genes OsSUT1 and OsSUT2 are induced at BPH oviposition sites. OsSUT2 mutants showed a higher resistance to gravid BPH than to nymph BPH, and this was correlated with callose deposition, as reflected in a different effect on M. graminicola infection. BPH phloem-feeding caused inhibition of callose deposition that was counteracted by BPH oviposition. Meanwhile, this pivotal role of sugar allocation in BPH-reduced rice susceptibility to M. graminicola was validated on rice cultivar RHT harbouring BPH resistance genes Bph3 and Bph17. In conclusion, we demonstrated that rice susceptibility to M. graminicola is regulated by BPH phloem-feeding and oviposition on rice through differences in plant sugar allocation.


Hemiptera , Oryza , Tylenchoidea , Animals , Female , Hemiptera/physiology , Sugars/metabolism , Oryza/metabolism
3.
Free Radic Biol Med ; 214: 54-68, 2024 Mar.
Article En | MEDLINE | ID: mdl-38311259

Peritoneal mesothelial cell senescence promotes the development of peritoneal dialysis (PD)-related peritoneal fibrosis. We previously revealed that Brahma-related gene 1 (BRG1) is increased in peritoneal fibrosis yet its role in modulating peritoneal mesothelial cell senescence is still unknown. This study evaluated the mechanism of BRG1 in peritoneal mesothelial cell senescence and peritoneal fibrosis using BRG1 knockdown mice, primary peritoneal mesothelial cells and human peritoneal samples from PD patients. The augmentation of BRG1 expression accelerated peritoneal mesothelial cell senescence, which attributed to mitochondrial dysfunction and mitophagy inhibition. Mitophagy activator salidroside rescued fibrotic responses and cellular senescence induced by BRG1. Mechanistically, BRG1 was recruited to oxidation resistance 1 (OXR1) promoter, where it suppressed transcription of OXR1 through interacting with forkhead box protein p2. Inhibition of OXR1 abrogated the improvement of BRG1 deficiency in mitophagy, fibrotic responses and cellular senescence. In a mouse PD model, BRG1 knockdown restored mitophagy, alleviated senescence and ameliorated peritoneal fibrosis. More importantly, the elevation level of BRG1 in human PD was associated with PD duration and D/P creatinine values. In conclusion, BRG1 accelerates mesothelial cell senescence and peritoneal fibrosis by inhibiting mitophagy through repression of OXR1. This indicates that modulating BRG1-OXR1-mitophagy signaling may represent an effective treatment for PD-related peritoneal fibrosis.


Peritoneal Dialysis , Peritoneal Fibrosis , Animals , Humans , Mice , Cellular Senescence/genetics , Mitochondrial Proteins/metabolism , Mitophagy/genetics , Peritoneal Dialysis/adverse effects , Peritoneal Fibrosis/genetics , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/pathology , Peritoneum/metabolism , Peritoneum/pathology
4.
Nature ; 625(7996): 697-702, 2024 Jan.
Article En | MEDLINE | ID: mdl-38172639

Body-centred cubic refractory multi-principal element alloys (MPEAs), with several refractory metal elements as constituents and featuring a yield strength greater than one gigapascal, are promising materials to meet the demands of aggressive structural applications1-6. Their low-to-no tensile ductility at room temperature, however, limits their processability and scaled-up application7-10. Here we present a HfNbTiVAl10 alloy that shows remarkable tensile ductility (roughly 20%) and ultrahigh yield strength (roughly 1,390 megapascals). Notably, these are among the best synergies compared with other related alloys. Such superb synergies derive from the addition of aluminium to the HfNbTiV alloy, resulting in a negative mixing enthalpy solid solution, which promotes strength and favours the formation of hierarchical chemical fluctuations (HCFs). The HCFs span many length scales, ranging from submicrometre to atomic scale, and create a high density of diffusive boundaries that act as effective barriers for dislocation motion. Consequently, versatile dislocation configurations are sequentially stimulated, enabling the alloy to accommodate plastic deformation while fostering substantial interactions that give rise to two unusual strain-hardening rate upturns. Thus, plastic instability is significantly delayed, which expands the plastic regime as ultralarge tensile ductility. This study provides valuable insights into achieving a synergistic combination of ultrahigh strength and large tensile ductility in MPEAs.

5.
CNS Neurosci Ther ; 30(3): e14452, 2024 03.
Article En | MEDLINE | ID: mdl-37735980

AIMS: Rasd1 has been reported to be correlated with neurotoxicity, metabolism, and rhythm, but its effect in case of subarachnoid hemorrhage (SAH) remained unclear. White matter injury (WMI) and ferroptosis participate in the early brain injury (EBI) after SAH. In this work, we have investigated whether Rasd1 can cause ferroptosis and contribute to SAH-induced WMI. METHODS: Lentivirus for Rasd1 knockdown/overexpression was administrated by intracerebroventricular (i.c.v) injection at 7 days before SAH induction. SAH grade, brain water content, short- and long-term neurobehavior, Western blot, real-time PCR, ELISA, biochemical estimation, immunofluorescence, diffusion tensor imaging (DTI), and transmission electron microscopy (TEM) were systematically performed. Additionally, genipin, a selective uncoupling protein 2(UCP2) inhibitor, was used in primary neuron and oligodendrocyte co-cultures for further in vitro mechanistic studies. RESULTS: Rasd1 knockdown has improved the neurobehavior, glia polarization, oxidative stress, neuroinflammation, ferroptosis, and demyelination. Conversely, Rasd1 overexpression aggravated these changes by elevating the levels of reactive oxygen species (ROS), inflammatory cytokines, MDA, free iron, and NCOA4, as well as contributing to the decrease of the levels of UCP2, GPX4, ferritin, and GSH mechanistically. According to the in vitro study, Rasd1 can induce oligodendrocyte ferroptosis through inhibiting UCP2, increasing reactive oxygen species (ROS), and activating NCOA4-mediated ferritinophagy. CONCLUSIONS: It can be concluded that Rasd1 exerts a modulated role in oligodendrocytes ferroptosis in WMI following SAH.


Brain Injuries , Subarachnoid Hemorrhage , White Matter , Animals , Brain Injuries/etiology , Diffusion Tensor Imaging , Neurons/metabolism , Reactive Oxygen Species , Subarachnoid Hemorrhage/diagnostic imaging , Subarachnoid Hemorrhage/metabolism , White Matter/diagnostic imaging , White Matter/metabolism
6.
Transl Res ; 266: 68-83, 2024 Apr.
Article En | MEDLINE | ID: mdl-37995969

Podocyte damage is the major cause of glomerular injury and proteinuria in multiple chronic kidney diseases. Metadherin (MTDH) is involved in podocyte apoptosis and promotes renal tubular injury in mouse models of diabetic nephropathy and renal fibrosis; however, its role in podocyte injury and proteinuria needs further exploration. Here, we show that MTDH was induced in the glomerular podocytes of patients with proteinuric chronic kidney disease and correlated with proteinuria. Podocyte-specific knockout of MTDH in mice reversed proteinuria, attenuated podocyte injury, and prevented glomerulosclerosis after advanced oxidation protein products challenge or adriamycin injury. Furthermore, specific knockout of MTDH in podocytes repressed ß-catenin phosphorylation at the Ser675 site and inhibited its downstream target gene transcription. Mechanistically, on the one hand, MTDH increased cAMP and then activated protein kinase A (PKA) to induce ß-catenin phosphorylation at the Ser675 site, facilitating the nuclear translocation of MTDH and ß-catenin; on the other hand, MTDH induced the deaggregation of pyruvate kinase M2 (PKM2) tetramers and promoted PKM2 monomers to enter the nucleus. This cascade of events leads to the formation of the MTDH/PKM2/ß-catenin/CBP/TCF4 transcription complex, thus triggering TCF4-dependent gene transcription. Inhibition of PKA activity by H-89 or blockade of PKM2 deaggregation by TEPP-46 abolished this cascade of events and disrupted transcription complex formation. These results suggest that MTDH induces podocyte injury and proteinuria by assembling the ß-catenin-mediated transcription complex by regulating PKA and PKM2 function.


Diabetic Nephropathies , Podocytes , Renal Insufficiency, Chronic , Humans , Mice , Animals , Podocytes/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Cyclic AMP-Dependent Protein Kinases , Transcription Factors/genetics , Proteinuria/genetics , Proteinuria/metabolism , Diabetic Nephropathies/metabolism , Renal Insufficiency, Chronic/metabolism , Membrane Proteins , RNA-Binding Proteins/metabolism
7.
Ther Apher Dial ; 28(2): 255-264, 2024 Apr.
Article En | MEDLINE | ID: mdl-37873689

INTRODUCTION: To assess the relationship between the rate of residual renal function (RRF) decline in the first year and all-cause and cardiovascular mortality in peritoneal dialysis (PD) patients. METHODS: Incident PD patients were divided into two groups by the corresponding RRF decline value, when hazard ratio (HR) = 1 was found by the restricted cubic spline. The associations of rate of decline of RRF in the first year with mortality were evaluated. RESULTS: Of 497 PD patients, 122 patients died. After adjusting for confounding factors, patients in fast-decline group had a significant increase risk of all-cause and cardiovascular mortality (HR: 1.97 and 2.09, respectively). Each 0.1-mL/min/1.73 m2 /month decrease in RRF in the first year of PD was associated with a 19% and 20% higher risk of all-cause and cardiovascular mortality, respectively. CONCLUSIONS: Faster decline of RRF in the first year was independently associated with all-cause and cardiovascular mortality in PD patients.


Cardiovascular Diseases , Kidney Failure, Chronic , Peritoneal Dialysis , Humans , Glomerular Filtration Rate , Kidney , Cardiovascular Diseases/epidemiology
8.
Atherosclerosis ; 387: 117389, 2023 12.
Article En | MEDLINE | ID: mdl-38011764

BACKGROUND AND AIMS: Atherosclerosis, the main cause of cardiovascular disease (CVD), is prevalent in patients undergoing peritoneal dialysis (PD). Atherogenic index (AI) is a strong predictor of atherosclerosis. However, its prognostic value in CVD outcomes and all-cause mortality among patients undergoing PD remains uncertain. Therefore, we aimed to evaluate the association between AI and all-cause and CVD mortality in PD patients. METHODS: Calculated based on lipid profiles obtained through standard laboratory procedures, AI was evaluated in 2682 patients who underwent PD therapy between January 2006 and December 2017 and were followed up until December 2018. The study population was divided into four groups according to the quartile distribution of AI (Q1: <2.20, Q2: 2.20 to <2.97, Q3: 2.97 to <4.04, and Q4: ≥4.04). Multivariable Cox models were employed to explore the associations between AI and CVD and all-cause mortality was evaluated. RESULTS: During a median follow-up of 35.5 months (interquartile range, 20.9-57.2 months), 800 patients died, including 416 deaths from CVD. Restricted cubic splines showed non-linear relationship between AI and adverse clinical outcomes. The risks of all-cause and CVD mortality gradually increased across quartiles (log-rank, p < 0.001). After adjusting for potential confounders, the highest quartile (Q4) showed significantly elevated hazard ratio (HR) for both all-cause mortality (HR 1.54 [95% confidence interval (CI), 1.21-1.96]) and CVD mortality risk (HR 1.78 [95% CI, 1.26-2.52]), compared to the lowest quartile (Q1). CONCLUSIONS: AI was independently associated with all-cause and CVD mortality in patients undergoing PD, suggesting that AI might be a useful prognostic marker.


Atherosclerosis , Cardiovascular Diseases , Peritoneal Dialysis , Humans , Peritoneal Dialysis/adverse effects , Renal Dialysis , Cause of Death , Atherosclerosis/diagnosis , Atherosclerosis/etiology , Retrospective Studies
9.
Plant Dis ; 2023 Oct 25.
Article En | MEDLINE | ID: mdl-37877995

Root-knot nematodes of the genus Meloidogyne parasitize the roots of thousands of plants and can cause severe damage and yield loss. Here, we report a new root-knot nematode, Meloidogyne limonae n. sp., parasitizing "lemon" (Citrus limon) in Hainan Province, South China. Lemon trees infected by the root-knot nematode showed poor-quality lemons, chlorosis of foliage, weak growth, and numerous root galls with white females and egg masses protruding outside. Phylogenetic trees of sequences within the ribosomal and mitochondria DNA demonstrated that this species differs clearly from other previously described root-knot nematodes. Morphologically, the new species is characterized by an oval-shaped perineal pattern and the lateral field marked by a ridge of cuticle on one or both sides, the dorsal arch is low with fine to coarse, smooth cuticle striae, vulva slit centrally located at the unstriated area; spicules of males are arcuate, curved ventrally; gubernaculum is distinct and curved; labial disc of second-stage juveniles is prominent and dumbbell-shaped; stylet knobs oval and sloping backwardly; pharyngeal glands not filling the body cavity, overlapping intestine ventrally; conical tail gradually tapering. Phylogenetic trees based on ITS1-5.8S-ITS2, D2-D3 of the 28S rDNA, and the COI and COII-16S rRNA genes of the mtDNA showed that Meloidogyne limonae n. sp. belongs to an undescribed root-knot nematode lineage that is separated from other species with the resemblance in morphology, such as M. floridensis M. hispanica, M. acronea, and M. paranaenis.

10.
Am J Pathol ; 193(12): 1936-1952, 2023 12.
Article En | MEDLINE | ID: mdl-37673330

Renal fibrosis is a pathologic process that leads to irreversible renal failure without effective treatment. Epithelial-to-mesenchymal transition (EMT) plays a key role in this process. The current study found that aberrant expression of IL-11 is critically involved in tubular EMT. IL-11 and its receptor subunit alpha-1 (IL-11Rα1) were significantly induced in renal tubular epithelial cells (RTECs) in unilateral ureteral obstruction (UUO) kidneys, co-localized with transforming growth factor-ß1. IL-11 knockdown ameliorated UUO-induced renal fibrosis in vivo and transforming growth factor-ß1-induced EMT in vitro. IL-11 intervention directly induced the transdifferentiation of RTECs to the mesenchymal phenotype and increased the synthesis of profibrotic mediators. The EMT response induced by IL-11 was dependent on the sequential activation of STAT3 and extracellular signal-regulated kinase 1/2 signaling pathways and the up-regulation of metadherin in RTECs. Micheliolide (MCL) competitively inhibited the binding of IL-11 with IL-11Rα1, suppressing the activation of STAT3 and extracellular signal-regulated kinase 1/2-metadherin pathways, ultimately inhibiting renal tubular EMT and interstitial fibrosis induced by IL-11. In addition, treatment with dimethylaminomicheliolide, a pro-drug of MCL for in vivo use, significantly ameliorated renal fibrosis exacerbated by IL-11 in the UUO model. These findings suggest that IL-11 is a promising target in renal fibrosis and that MCL/dimethylaminomicheliolide exerts its antifibrotic effect by suppressing IL-11/IL-11Rα1 interaction and blocking its downstream effects.


Epithelial-Mesenchymal Transition , Kidney Diseases , Ureteral Obstruction , Epithelial-Mesenchymal Transition/drug effects , Fibrosis , Interleukin-11/metabolism , Interleukin-11/pharmacology , Interleukin-11/therapeutic use , Kidney/pathology , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/pharmacology , Transcription Factors/metabolism , Transforming Growth Factor beta1/metabolism , Ureteral Obstruction/drug therapy , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology , Animals , Mice
11.
J Transl Med ; 21(1): 639, 2023 09 19.
Article En | MEDLINE | ID: mdl-37726857

BACKGROUND: Progressive peritoneal fibrosis is a worldwide public health concern impacting patients undergoing peritoneal dialysis (PD), yet there is no effective treatment. Our previous study revealed that a novel compound, micheliolide (MCL) inhibited peritoneal fibrosis in mice. However, its mechanism remains unclear. Brahma-related gene 1 (BRG1) is a key contributor to organ fibrosis, but its potential function in PD-related peritoneal fibrosis and the relationship between MCL and BRG1 remain unknown. METHODS: The effects of MCL on BRG1-induced fibrotic responses and TGF-ß1-Smads pathway were examined in a mouse PD model and in vitro peritoneal mesothelial cells. To investigate the targeting mechanism of MCL on BRG1, coimmunoprecipitation, MCL-biotin pulldown, molecular docking and cellular thermal shift assay were performed. RESULTS: BRG1 was markedly elevated in a mouse PD model and in peritoneal mesothelial cells cultured in TGF-ß1 or PD fluid condition. BRG1 overexpression in vitro augmented fibrotic responses and promoted TGF-ß1-increased-phosphorylation of Smad2 and Smad3. Meanwhile, knockdown of BRG1 diminished TGF-ß1-induced fibrotic responses and blocked TGF-ß1-Smad2/3 pathway. MCL ameliorated BRG1 overexpression-induced peritoneal fibrosis and impeded TGF-ß1-Smad2/3 signaling pathway both in a mouse PD model and in vitro. Mechanically, MCL impeded BRG1 from recognizing and attaching to histone H3 lysine 14 acetylation by binding to the asparagine (N1540) of BRG1, in thus restraining fibrotic responses and TGF-ß1-Smad2/3 signaling pathway. After the mutation of N1540 to alanine (N1540A), MCL was unable to bind to BRG1 and thus, unsuccessful in suppressing BRG1-induced fibrotic responses and TGF-ß1-Smad2/3 signaling pathway. CONCLUSION: Our research indicates that BRG1 may be a crucial mediator in peritoneal fibrosis and MCL targeting N1540 residue of BRG1 may be a novel therapeutic strategy to combat PD-related peritoneal fibrosis.


Peritoneal Dialysis , Peritoneal Fibrosis , Animals , Mice , Disease Models, Animal , Molecular Docking Simulation , Peritoneal Dialysis/adverse effects , Peritoneal Fibrosis/drug therapy , Transforming Growth Factor beta1
12.
Chem Biol Interact ; 382: 110589, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37268199

Peritoneal fibrosis (PF) is the main cause of peritoneal ultrafiltration failure in patients undergoing long-term peritoneal dialysis (PD). Epithelial-mesenchymal transition (EMT) is the key pathogenesis of PF. However, currently, no specific treatments are available to suppress PF. N-methylpiperazine-diepoxyovatodiolide (NMPDOva) is a newly synthesized compound that involves a chemical modification of ovatodiolide. In this study, we aimed to explore the antifibrotic effects of NMPDOva in PD-related PF and underlying mechanisms. A mouse model of PD-related PF was established via daily intraperitoneal injection of 4.25% glucose PD fluid. In vitro studies were performed using the transforming growth factor-beta1 (TGF-ß1)-stimulated HMrSV5 cell line. Pathological changes were observed, and fibrotic markers were significantly elevated in the peritoneal membrane in mice model of PD-related PF. However, NMPDOva treatment significantly alleviated PD-related PF by decreasing the extracellular matrix accumulation. NMPDOva treatment decreased the expression of fibronectin, collagen Ⅰ, and alpha-smooth muscle actin (α-SMA) in mice with PD-related PF. Moreover, NMPDOva could alleviate TGF-ß1-induced EMT in HMrSV5 cells, inhibited phosphorylation and nuclear translocation of Smad2/3, and increased the expression of Smad7. Meanwhile, NMPDOva inhibited phosphorylation of JAK2 and STAT3. Collectively, these results indicated that NMPDOva prevents PD-related PF by inhibiting the TGF-ß1/Smad and JAK/STAT signaling pathway. Therefore, because of these antifibrotic effects, NMPDOva may be a promising therapeutic agent for PD-related PF.


Peritoneal Fibrosis , Mice , Animals , Peritoneal Fibrosis/drug therapy , Peritoneal Fibrosis/etiology , Peritoneal Fibrosis/pathology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta/metabolism , Signal Transduction , Peritoneum/metabolism , Peritoneum/pathology , Epithelial-Mesenchymal Transition , Fibrosis
13.
Ren Fail ; 45(1): 2224893, 2023 Dec.
Article En | MEDLINE | ID: mdl-37334918

BACKGROUND: The glucose-to-lymphocyte ratio (GLR), a glucose metabolism and systemic inflammatory response parameter, is associated with an adverse prognosis for various diseases. However, the association between serum GLR and prognosis in patients undergoing peritoneal dialysis (PD) is poorly understood. METHODS: In this multi-center cohort study, 3236 PD patients were consecutively enrolled between 1 January 2009 and 31 December 2018. Patients were divided into four groups according to the quartiles of baseline GLR levels (Q1: GLR ≤ 2.91, Q2:2.91 < GLR ≤ 3.91, Q3:3.91 < GLR < 5.59 and Q4: GLR ≥ 5.59). The primary endpoint was all-cause and cardiovascular disease (CVD) related mortality. The correlation between GLR and mortality was examined using Kaplan-Meier and multivariable Cox proportional analyses. RESULTS: During the follow-up period of 45.93 ± 29.01 months, 25.53% (826/3236) patients died, of whom 31% (254/826) were in Q4 (GLR ≥ 5.59). Multivariable analysis revealed that GLR was significantly associated with all-cause mortality (adjusted HR 1.02; CI 1.00 ∼ 1.04, p = .019) and CVD mortality (adjusted HR 1.02; CI 1.00 ∼ 1.04, p = .04). Compared with the Q1 (GLR ≤ 2.91), placement in Q4 was associated with an increased risk of all-cause mortality (adjusted HR: 1.26, 95% CI: 1.02 ∼ 1.56, p = .03) and CVD mortality (adjusted HR 1.76; CI 1.31 ∼ 2.38, p < .001). A nonlinear relationship was found between GLR and all-cause or CVD mortality in patients undergoing PD (p = .032). CONCLUSION: A higher serum GLR level is an independent prognostic factor for all-cause and CVD mortality in patients undergoing PD, suggesting that more attention should be paid to GLR.


Cardiovascular Diseases , Peritoneal Dialysis , Humans , Cohort Studies , Prognosis , Clinical Relevance , Retrospective Studies , Peritoneal Dialysis/adverse effects , Glucose , Proportional Hazards Models
14.
ACS Appl Mater Interfaces ; 15(26): 31173-31184, 2023 Jul 05.
Article En | MEDLINE | ID: mdl-37340449

Long-term overuse of chemical nematicides has resulted in low control efficacy toward destructive root-knot nematodes, and continuous development in nanotechnology is supposed to enhance the utilization efficiency of nematicides to meet practical needs. Herein, a cationic star polymer (SPc) was constructed to load fluopyram (flu) and prepare a flu nanoagent. Hydrogen bonding and van der Waals forces facilitated the self-assembly of the flu nanoagent, leading to the breakdown of self-aggregated flu and reducing its particle size to 60 nm. The bioactivity of flu was remarkably improved, with the half lethal concentration 50 from 8.63 to 5.70 mg/L due to the help of SPc. Transcriptome analysis found that a large number of transport-related genes were upregulated in flu nanoagent-exposed nematodes, while the expression of many energy-related genes was disturbed, suggesting that the enhanced uptake of flu nanoagents by nematodes might lead to the disturbance of energy synthesis and metabolism. Subsequent experiments confirmed that exposure to flu nanoagents markedly increased the reactive oxygen species (ROS) level of nematodes. Compared to flu treatment alone, succinate dehydrogenase (SDH) activity was inhibited in flu nanoagent-exposed nematodes with an increase in the pIC50 from 8.81 to 11.04, which further interfered with adenosine triphosphate (ATP) biosynthesis. Furthermore, the persistence of SPc-loaded flu in soil was prolonged by 2.33 times at 50 days after application. The protective effects of flu nanoagents on eggplant seedlings were significantly improved in both greenhouse and field trials, and the root-knot number was consistently smaller in roots treated with flu nanoagents than in those treated with flu alone. Overall, this study successfully constructed a self-assembled flu nanoagent with amplified effects on oxidative stress, SDH activity, and ATP generation, leading to highly effective control of root-knot nematodes in the field.


Adenosine Triphosphate , Succinate Dehydrogenase , Succinate Dehydrogenase/metabolism , Succinate Dehydrogenase/pharmacology , Adenosine Triphosphate/metabolism , Antinematodal Agents/pharmacology , Oxidative Stress , Reactive Oxygen Species/metabolism
15.
Viruses ; 15(6)2023 06 19.
Article En | MEDLINE | ID: mdl-37376695

The cucurbit vegetable chieh-qua (Benincasa hispida var. chieh-qua How) is an important crop in South China and southeast Asian countries. Viral diseases cause substantial loss of chieh-qua yield. To identify the viruses that affect chieh-qua in China, ribosomal RNA-depleted total RNA sequencing was performed using chieh-qua leaf samples with typical viral symptoms. The virome of chieh-qua comprises four known viruses (melon yellow spot virus (MYSV), cucurbit chlorotic yellows virus (CCYV), papaya ringspot virus (PRSV) and watermelon silver mottle virus (WSMoV) and two novel viruses: cucurbit chlorotic virus (CuCV) in the genus Crinivirus and chieh-qua endornavirus (CqEV) in the genus Alphaendornavirus. The complete genomes of the two novel viruses in chieh-qua and three other isolates of CuCV in pumpkin, watermelon and cucumber were determined and the recombination signals of pumpkin and watermelon isolates of CuCV were detected. A reverse transcriptase PCR indicated that the dominant viruses of chieh-qua in Hainan are MYSV (66.67%) and CCYV (55.56%), followed by CuCV (27.41%), WSMoV (7.41%), cucumber mosaic virus (8.15%), zucchini yellow mosaic virus (6.67%), PRSV (6.67%) and CqEV (35.56%). Our findings support diagnostic and prevalence studies of viruses infecting chieh-qua in China, enabling sustainable control strategies for cucurbit viruses worldwide.


Cucumis sativus , Cucurbita , Cucurbitaceae , Prevalence , Virome
16.
Plant Dis ; 107(10): 3148-3154, 2023 Oct.
Article En | MEDLINE | ID: mdl-37026625

Root-knot nematodes (Meloidogyne spp.) are the most economically damaging group of plant-parasitic nematodes. They are considered to be a major constraint of pepper (Capsicum annuum L.) crops worldwide. In China, Hainan Island is the main producer of pepper, where the climatic conditions and cropping patterns are favorable for infection by Meloidogyne spp. In this study, we conducted a detailed investigation of the occurrence, severity, and population distribution of root-knot nematodes infesting pepper throughout Hainan Island. We also tested the level of resistance to M. enterolobii and M. incognita of the common pepper cultivars in Hainan. Our results showed that root-knot nematodes belonging to M. enterolobii, M. incognita, and M. javanica were found in Hainan, and the dominant population was M. enterolobii, which is the predominant species in the tropical area. Notably, all the pepper cultivars in this study were highly susceptible to M. enterolobii, which is probably a reason for its rapid spread throughout Hainan. The pepper cultivars exhibited different levels of resistance to M. incognita. This study promotes the comprehensive understanding of the root-knot nematode distribution and host resistance level of Meloidogyne in Hainan, which will guide the effective control of root-knot nematodes.


Capsicum , Tylenchida , Tylenchoidea , Animals , Plant Diseases/parasitology , Plant Roots/parasitology
17.
Carbohydr Polym ; 299: 120189, 2023 Jan 01.
Article En | MEDLINE | ID: mdl-36876804

Bioplastic derived from renewable lignocellulosic biomass is an attractive alternative to petroleum-based plastics. Herein, Callmellia oleifera shells (COS), a unique byproduct from tea oil industry, were delignified and converted into high-performance bio-based films via a green citric acid treatment (15 %, 100 °C and 24 h), taking advantage of their high hemicellulose content. The structure-property relations of COS holocellulose (COSH) films were systematically analyzed considering different treatment conditions. The surface reactivity of COSH was improved via a partial hydrolysis route and strong hydrogen bonding formed between the holocellulose micro/nanofibrils. COSH films exhibited high mechanical strength, high optical transmittance, improved thermal stability, and biodegradability. A mechanical blending pretreatment of COSH, which disintegrated the COSH fibers before the citric acid reaction, further enhanced the tensile strength and Young's modulus of the films up to 123.48 and 5265.41 MPa, respectively. The films decomposed completely in soil, demonstrating an excellent balance between degradability and durability.


Camellia , Biomass , Citric Acid , Elastic Modulus , Hydrogen Bonding
18.
Nutr Metab Cardiovasc Dis ; 33(5): 1049-1056, 2023 05.
Article En | MEDLINE | ID: mdl-36948938

BACKGROUND AND AIMS: Remnant cholesterol (RC) adversely contributes to cardiovascular disease (CVD) and overall survival in various diseases. However, its role in CVD outcomes and all-cause mortality in patients undergoing peritoneal dialysis (PD) is limited. Therefore, we aimed to investigate the association between RC and all-cause and CVD mortality in patients undergoing PD. METHODS AND RESULTS: Based on lipid profiles recorded using standard laboratory procedures, fasting RC levels were calculated in 2710 incident patients undergoing PD who were enrolled between January 2006 and December 2017 and followed up until December 2018. Patients were divided into four groups according to the quartile distribution of baseline RC levels (Q1: <0.40 mmol/L, Q2: 0.40 to <0.64 mmol/L, Q3: 0.64 to <1.03 mmol/L, and Q4: ≥1.03 mmol/L). Associations between RC and CVD and all-cause mortality were evaluated using multivariable Cox models. During the median follow-up period of 35.4 months (interquartile range, 20.9-57.2 months), 820 deaths were recorded, of which 438 were CVD-related. Smoothing plots showed non-linear relationships between RC and adverse outcomes. The risks of all-cause and CVD mortality increased progressively through the quartiles (log-rank, p < 0.001). Using adjusted proportional hazard models, a comparison of the highest (Q4) to lowest (Q1) quartiles revealed significant increases in the hazard ratio (HR) for all-cause mortality (HR 1.95 [95% confidence interval (CI), 1.51-2.51]) and CVD mortality risk (HR 2.60 [95% CI, 1.80-3.75]). CONCLUSION: An increased RC level was independently associated with all-cause and CVD mortality in patients undergoing PD, suggesting that RC was important clinically and required further research.


Cardiovascular Diseases , Peritoneal Dialysis , Humans , Retrospective Studies , Peritoneal Dialysis/adverse effects , Risk Factors , Cholesterol , Proportional Hazards Models
19.
Plant Dis ; 107(4): 1027-1034, 2023 Apr.
Article En | MEDLINE | ID: mdl-36096101

On a global basis, potato cyst nematodes (Globodera spp. Skarbilovich 1959 [Behrens 1975]) are one of the most serious soilborne pathogens in potato (Solanum tuberosum L.) production. In 2019 to 2020, 188 soil samples were taken from rhizosphere soil associated with the roots of stunted and chlorotic potato plants in the main potato-growing areas of Yunnan and Sichuan Provinces of China. Globodera rostochiensis Wollenweber 1923 (Skarbilovich 1959) was recovered from 112 of the samples. Nematode identification was as confirmed by morphometric, light microscopy, electron microscopy, and molecular methodologies. Population densities of G. rostochiensis ranged from 47.0 to 69.0 eggs/g of soil. A BLASTn homology search program was used to compare the sequences of populations of G. rostrochienses from Yunnan and Sichuan Provinces with populations of other Heteroderinae spp. and populations of G. rostochiensis from other nations. Although potato has been grown in China for at least 400 years and the nation produces more potato than any other country, potato cyst nematodes were not reported in China until 2022.


Nematoda , Solanum tuberosum , Animals , China , Soil
20.
Life (Basel) ; 12(12)2022 Dec 14.
Article En | MEDLINE | ID: mdl-36556467

Meloidogyne enterolobii, a highly pathogenic root-knot nematode species, causes serious damage to agricultural production worldwide. Collagen is an important part of the nematode epidermis, which is crucial for nematode shape maintenance, motility, and reproduction. In this study, we report that a novel collagen gene, Me-col-1, from the highly pathogenic root-knot nematode species Meloidogyne enterolobi was required for the egg formation of this pathogen. Me-col-1 encodes a protein with the size of 35 kDa, which is closely related to collagen found in other nematodes. Real-time PCR assays showed that the expression of Me-col-1 was highest in eggs and lowest in pre-parasitic second-stage juveniles (preJ2). Interestingly, knockdown of Me-col-1 did not compromise the survival rate of preJ2 but significantly reduced the egg production and consequentially caused 35.79% lower multiplication rate (Pf/Pi) compared with control. Our study provides valuable information for better understanding the function of collagen genes in the nematode life cycle, which can be used in the development of effective approaches for nematode control.

...