Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Environ Pollut ; 346: 123658, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38432343

The transmission of antibiotic resistance genes (ARGs) in pathogenic bacteria affects culture animal health, endangers food safety, and thus gravely threatens public health. However, information about the effect of disinfectants - triclosan (TCS) on ARGs dissemination of bacterial pathogens in aquatic animals is still limited. One Citrobacter freundii (C. freundii) strain harboring tet(X4)-resistant plasmid was isolated from farmed grass carp guts, and subsequently conjugative transfer frequency from C. freundii to Escherichia coli C600 (E. coli C600) was analyzed under different mating time, temperature, and ratio. The effect of different concentrations of TCS (0.02, 0.2, 2, 20, 200 and 2000 µg/L) on the conjugative transfer was detected. The optimum conditions for conjugative transfer were at 37 °C for 8h with mating ratio of 2:1 or 1:1 (C. freundii: E. coli C600). The conjugative transfer frequency was significantly promoted under TCS treatment and reached the maximum value under 2.00 µg/L TCS with 18.39 times that of the control group. Reactive oxygen species (ROS), superoxide dismutase (SOD) and catalase (CAT) activities, cell membrane permeability of C. freundii and E. coli C600 were obviously increased under TCS stress. Scanning electron microscope showed that the cell membrane surface of the conjugative strains was wrinkled and pitted, even broken at 2.00 µg/L TCS, while lysed or even ruptured at 200.00 µg/L TCS. In addition, TCS up-regulated expression levels of oxidative stress genes (katE, hemF, bcp, hemA, katG, ahpF, and ahpC) and cell membrane-related genes (fimC, bamE and ompA) of donor and recipient bacteria. Gene Ontology (GO) enrichment demonstrated significant changes in categories relevant to pilus, porin activity, transmembrane transporter activity, transferase activity, hydrolase activity, material transport and metabolism. Taken together, a tet(X4)-resistant plasmid could horizontal transmission among different pathogens, while TCS can promote the propagation of the resistant plasmid.


Triclosan , Animals , Tigecycline/pharmacology , Triclosan/toxicity , Escherichia coli , Citrobacter freundii/genetics , Anti-Bacterial Agents/toxicity , Plasmids , Bacteria/genetics , Microbial Sensitivity Tests
2.
Fish Shellfish Immunol ; 143: 109187, 2023 Dec.
Article En | MEDLINE | ID: mdl-37923182

Hepcidin, as an antimicrobial peptide, is associated with innate immunity and is considered a potential antibiotic substitute. In the present study, the hepcidin gene from the cavefish - Onychostoma macrolepis was identified and analyzed. The recombinant hepcidin protein (rOmhepc) was obtained by prokaryotic expression, evaluating the inhibitory effect of 5 pathogenic bacteria in vitro. Sixty O. macrolepis injected with 100 µL A. hydrophila (1.5 × 108 CFU/mL) were randomly divided into the therapeutic group and infection group, and therapeutic group was injected with 100 µL rOmhepc (100 µg/mL) at 6 and 18 h. The survival rates of O. macrolepis and bacterial load in liver were measured at 24 h. The liver tissues were collected at 0, 6, 12, and 24 h after A. hydrophila injection for investigating expression levels of immune-related, inflammatory factor genes and FPN1 gene. The results demonstrated that the hepcidin CDS contained 279 bp and encoded 93 aa. Hepcidin protein has a hydrophobic surface formed by multiple hydrophobic residues (CCGCCYC), and the theoretical pI was 7.53. Omhepc gene was expressed at varying levels in tested tissues, with the liver showing the highest expression, followed by the spleen. The expression of hepcidin gene following A. hydrophila infection was up-regulated and then down-regulated in liver, and the highest expression level was found at 12 h with a 10.93-fold. The rOmhepc remarkably inhibited the growth of A. hydrophila, Staphylococcus aureus, and Streptococcus agalactiae, with inhibition rates reaching 69.67 %, 42.97 %, and 65.74 % at 100 µg/mL. The mortality rates of O. macrolepis and bacterial load in liver were significantly decreased in the therapeutic group than that of infection group (p < 0.05). After the rOmhepc therapeutic, interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) were significantly down-regulated with 14.4-fold and 106.07-fold at 24 h. Furthermore, the expression of immune-related genes (C3, TNF-α, IFN-γ) and Ferroportin gene (FPN1) significantly decreased (p < 0.05). The integrated analyses indicated that the rOmhepc could significantly inhibit the growth of A. hydrophila both in vitro and in vivo, attenuating the over-expression of inflammatory factor, FPN1 and immune-related genes.


Cyprinidae , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Aeromonas hydrophila/physiology , Hepcidins , Cyprinidae/metabolism , Immunity, Innate/genetics , Interleukin-6 , Recombinant Proteins , Iron , Homeostasis , Fish Proteins/chemistry
3.
Water Res ; 215: 118275, 2022 May 15.
Article En | MEDLINE | ID: mdl-35305491

Reactive oxygen species (ROS) such as hydroxyl radicals (•OH), superoxide radicals (O2•-), and singlet oxygen (1O2) have often been suggested to play a role in ozone-resistant pollutant abatement during catalytic ozonation. However, there are significant controversies regarding their relative importance in literature. Currently, the role of ROS in pollutant abatement is commonly evaluated by the quenching method based on the assumption that the added ROS quenchers (e.g., tert-butanol (TBA) and para-benzoquinone (pBQ)) quench only the target ROS, but do not considerably influence other reaction mechanisms of catalytic ozonation. However, we hypothesized that this assumption is possibly unrealistic and a main cause for the controversies reported in literature. To test this hypothesis, this study evaluated the effects of six commonly used ROS quenchers (TBA, pBQ, methanol (MeOH), 4-chloro-7-nitrobenzo-2-oxa-1,3-dizole (NBD-Cl), furfuryl alcohol (FFA), and sodium azide (NaN3)) on the mechanism of catalytic ozonation with manganese dioxide. The results show that rather than only quenching their target ROS, these quenchers can profoundly change the catalytic ozonation system through various mechanisms, e.g., interrupting the radical chain reaction of O3 decomposition, blocking the active sites of catalysts, and consuming O3 in the system. Due to the significant confounding effects of ROS quenchers on the reaction mechanism, the quenching method actually cannot reveal the role of ROS in pollutant abatement and often misinterpreted the catalytic ozonation mechanism. The results indicate that the commonly used quenching method is probably not an appropriate way to investigate the role of ROS in pollutant abatement during catalytic ozonation, and many previously reported mechanisms obtained with the quenching method may need a revisit.


Environmental Pollutants , Ozone , Water Pollutants, Chemical , Water Purification , Ozone/chemistry , Reactive Oxygen Species , Water Pollutants, Chemical/chemistry , Water Purification/methods
...