Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Arch Biochem Biophys ; 761: 110149, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39271096

RESUMEN

BACKGROUND: The pathogenesis exploration and timely intervention of hepatocellular carcinoma (HCC) are crucial due to its global impact on human health. As a general tumor biomarker, stanniocalcin 2 (STC2), its role in HCC remains unclear. We aimed to analyze the effect and mechanism of STC2 on HCC. METHODS: STC2 expressions in HCC tissues and cell lines were measured. si-STC2 and oe-STC2 transfections were utilized to analyze how STC2 affected cell functions. Functional enrichment analysis of STC2 was performed by Gene Set Enrichment Analysis (GSEA). The regulatory mechanism of STC2 on HCC was investigated using 2-DG, 3-MA, IGF-1, Rap, and LY294002. The impact of STC2 on HCC progression in vivo was evaluated by the tumor formation experiment. RESULTS: Higher levels of STC2 expression were observed in HCC tissues and cell lines. Besides, STC2 knockdown reduced proliferation, migration, and invasion, while inducing cell apoptosis. Further analysis indicated a positive correlation between STC2 and glycolysis. STC2 knockdown inhibited glycolysis progression and down-regulated the expressions of PKM2, GLUT1, and HK2 in HCC cells. However, treatment with glycolysis inhibitor (2-DG) prevented oe-STC2 from promoting the growth of HCC cells. Additionally, STC2 knockdown up-regulated the levels of LC3II/LC3I and Beclin1 and reduced the phosphorylation of PI3K, AKT, and mTOR. Treatment with 3-MA, IGF-1, Rap, and LY294002 altered the function of STC2 on proliferation and glycolysis in HCC cells. Tumor formation experiment results revealed that STC2 knockdown inhibited HCC progression. CONCLUSIONS: STC2 knockdown inhibited cell proliferation and glycolysis in HCC through the PI3K/Akt/mTOR pathway-mediated autophagy induction.

2.
Anal Chem ; 96(37): 15066-15073, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39225442

RESUMEN

In this work, by ingeniously integrating catalytic hairpin assembly (CHA), double-end Mg2+-dependent DNAzyme, and hybridization chain reaction (HCR) as a triple cascade signal amplifier, an efficient concatenated CHA-DNAzyme-HCR (CDH) system was constructed to develop an ultrasensitive electrochemical biosensor with a low-background signal for the detection of microRNA-221 (miRNA-221). In the presence of the target miRNA-221, the CHA cycle was initiated by reacting with hairpins H1 and H2 to form DNAzyme structure H1-H2, which catalyzed the cleavage of the substrate hairpin H0 to release two output DNAs (output 1 and output 2). Subsequently, the double-loop hairpin H fixed on the electrode plate was opened by the output DNAs, to trigger the HCR with the assistance of hairpins Ha and Hb. Finally, methylene blue was intercalated into the long dsDNA polymer of the HCR product, resulting in a significant electrochemical signal. Surprisingly, the double-loop structure of the hairpin H could prominently reduce the background signal for enhancing the signal-to-noise ratio (S/N). As a proof of concept, an ultrasensitive electrochemical biosensor was developed using the CDH system with a detection limit as low as 9.25 aM, achieving favorable application for the detection of miRNA-221 in various cancer cell lysates. Benefiting from its enzyme-free, label-free, low-background, and highly sensitive characteristics, the CDH system showed widespread application potential for analyzing trace amounts of biomarkers in various clinical research studies.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Técnicas Electroquímicas , MicroARNs , MicroARNs/análisis , Técnicas Biosensibles/métodos , Humanos , ADN Catalítico/química , ADN Catalítico/metabolismo , Hibridación de Ácido Nucleico , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico
3.
Chin J Integr Med ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39243318

RESUMEN

OBJECTIVE: To assess the efficacy of Qingda Granule (QDG) in ameliorating hypertension-induced cardiac damage and investigate the underlying mechanisms involved. METHODS: Twenty spontaneously hypertensive rats (SHRs) were used to develope a hypertension-induced cardiac damage model. Another 10 Wistar Kyoto (WKY) rats were used as normotension group. Rats were administrated intragastrically QDG [0.9 g/(kg•d)] or an equivalent volume of pure water for 8 weeks. Blood pressure, histopathological changes, cardiac function, levels of oxidative stress and inflammatory response markers were measured. Furthermore, to gain insights into the potential mechanisms underlying the protective effects of QDG against hypertension-induced cardiac injury, a network pharmacology study was conducted. Predicted results were validated by Western blot, radioimmunoassay immunohistochemistry and quantitative polymerase chain reaction, respectively. RESULTS: The administration of QDG resulted in a significant decrease in blood pressure levels in SHRs (P<0.01). Histological examinations, including hematoxylin-eosin staining and Masson trichrome staining revealed that QDG effectively attenuated hypertension-induced cardiac damage. Furthermore, echocardiography demonstrated that QDG improved hypertension-associated cardiac dysfunction. Enzyme-linked immunosorbent assay and colorimetric method indicated that QDG significantly reduced oxidative stress and inflammatory response levels in both myocardial tissue and serum (P<0.01). CONCLUSIONS: Both network pharmacology and experimental investigations confirmed that QDG exerted its beneficial effects in decreasing hypertension-induced cardiac damage by regulating the angiotensin converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor type 1 axis and ACE/Ang II/Ang II receptor type 2 axis.

4.
Molecules ; 29(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39064878

RESUMEN

Weak doping can broaden, shift, and quench plasmon peaks in nanoparticles, but the mechanistic intricacies of the diverse responses to doping remain unclear. In this study, we used the time-dependent density functional theory (TD-DFT) to compute the excitation properties of transition-metal Pd- or Pt-doped gold and silver atomic arrays and investigate the evolution characteristics and response mechanisms of their plasmon peaks. The results demonstrated that the Pd or Pt doping of the off-centered 10 × 2 atomic arrays broadened or shifted the plasmon peaks to varying degrees. In particular, for Pd-doped 10 × 2 Au atomic arrays, the broadened plasmon peak significantly blueshifted, whereas a slight red shift was observed for Pt-doped arrays. For the 10 × 2 Ag atomic arrays, Pd doping caused almost no shift in the plasmon peak, whereas Pt doping caused a substantial red shift in the broadened plasmon peak. The analysis revealed that the diversity in these doping responses was related to the energy positions of the d electrons in the gold and silver atomic clusters and the positions of the doping atomic orbitals in the energy bands. The introduction of doping atoms altered the symmetry and gap size of the occupied and unoccupied orbitals, so multiple modes of single-particle transitions were involved in the excitation. An electron transfer analysis indicated a close correlation between excitation energy and the electron transfer of doping atoms. Finally, the differences in the symmetrically centered 11 × 2 doped atomic array were discussed using electron transfer analysis to validate the reliability of this analytical method. These findings elucidate the microscopic mechanisms of the evolution of plasmon peaks in doped atomic clusters and provide new insights into the rational control and application of plasmons in low-dimensional nanostructures.

5.
Front Oncol ; 14: 1408436, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988709

RESUMEN

Objective: This study aimed to investigate the impact of radiation therapy and radiation enteritis on intestinal flora, providing insights for treatment and prevention. Methods: Fecal samples were collected from 16 patients undergoing pelvic radiotherapy at Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital). Samples were collected before and after radiotherapy (27-30Gy), and analyzed using DNA sequencing and biostatistical methods. Results: Patients with radiation enteritis showed increased α-diversity and ß-diversity of intestinal flora compared to those without radiation enteritis. Differences in flora composition were observed, with higher abundance of secondary pathways such as amino acid metabolism, carbohydrate metabolism, cofactors and vitamins metabolism, and lipid metabolism. Conclusion: The study revealed that patients developing radiation enteritis during pelvic radiation therapy had increased diversity and abundance of intestinal flora compared to those who did not develop radiation enteritis. Additionally, patients without radiation enteritis showed significantly higher diversity and abundance of intestinal flora post-radiation compared to pre-radiation.

6.
J Cardiovasc Pharmacol ; 84(3): 370-382, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39027976

RESUMEN

ABSTRACT: Quercetin is known for its antihypertensive effects. However, its role on hypertensive renal injury has not been fully elucidated. In this study, hematoxylin and eosin staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, and Annexin V staining were used to assess the pathological changes and cell apoptosis in the renal tissues of angiotensin II (Ang II)-infused mice and Ang II-stimulated renal tubular epithelial cell line (NRK-52E). A variety of technologies, including network pharmacology, RNA-sequencing, immunohistochemistry, and Western blotting, were performed to investigate its underlying mechanisms. Network pharmacology analysis identified multiple potential candidate targets (including TP53, Bcl-2, and Bax) and enriched signaling pathways (including apoptosis and p53 signaling pathway). Quercetin treatment significantly alleviated the pathological changes in renal tissues of Ang II-infused mice and reversed 464 differentially expressed transcripts, as well as enriched several signaling pathways, including those related apoptosis and p53 pathway. Furthermore, quercetin treatment significantly inhibited the cell apoptosis in renal tissues of Ang II-infused mice and Ang II-stimulated NRK-52E cells. In addition, quercetin treatment inhibited the upregulation of p53, Bax, cleaved-caspase-9, and cleaved-caspase-3 protein expression and the downregulation of Bcl-2 protein expression in both renal tissue of Ang II-infused mice and Ang II-stimulated NRK-52E cells. Moreover, the molecular docking results indicated a potential binding interaction between quercetin and TP53. Quercetin treatment significantly attenuated hypertensive renal injury and cell apoptosis in renal tissues of Ang II-infused mice and Ang II-stimulated NRK-52E cells and by targeting p53 may be one of the potential underlying mechanisms.


Asunto(s)
Angiotensina II , Antihipertensivos , Apoptosis , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Farmacología en Red , Quercetina , Transducción de Señal , Proteína p53 Supresora de Tumor , Quercetina/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Masculino , Transducción de Señal/efectos de los fármacos , Antihipertensivos/farmacología , Ratas , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Redes Reguladoras de Genes/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Riñón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , RNA-Seq , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Presión Sanguínea/efectos de los fármacos , Hipertensión Renal/metabolismo , Hipertensión Renal/tratamiento farmacológico , Hipertensión Renal/patología , Nefritis
7.
Food Chem X ; 23: 101331, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39071939

RESUMEN

To investigate the correlation between the difference of secondary metabolites and the disease-resistance activity of different varieties of Congou black tea. Among a total of 657 secondary metabolites identified, 183 metabolites had anti-disease activity, 113 were key active ingredients in traditional Chinese medicine (TCM), 73.22% had multiple anti-disease activities, and all were mainly flavonoids and phenolic acids. The main enriched metabolic pathways were phenylpropanoid biosynthesis, biosynthesis of secondary metabolites, flavonoid biosynthesis, and metabolic pathways. Flavonoid and phenolic acid secondary metabolites were more correlated with anti-disease activity and key active TCM ingredients. Conclusion: The types of JGY and Q601 Congou black tea of the relative contents show large differences in secondary metabolites. Flavonoid and phenolic acid secondary metabolites were identified as the primary factors contributing to the variation in secondary metabolites among different varieties of Congou black tea. These compounds also exhibited a stronger correlation with disease resistance activity.

8.
ACS Chem Neurosci ; 15(13): 2484-2503, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38865609

RESUMEN

Neuroinflammation is an important factor that exacerbates neuronal death and abnormal synaptic function in neurodegenerative diseases (NDDs). Due to the complex pathogenesis and the presence of blood-brain barrier (BBB), no effective clinical drugs are currently available. Previous results showed that N-salicyloyl tryptamine derivatives had the potential to constrain the neuroinflammatory process. In this study, 30 new N-salicyloyl tryptamine derivatives were designed and synthesized to investigate a structure-activity relationship (SAR) for the indole ring of tryptamine in order to enhance their antineuroinflammatory effects. Among them, both in vitro and in vivo compound 18 exerted the best antineuroinflammatory effects by suppressing the activation of microglia, which is the culprit of neuroinflammation. The underlying mechanism of its antineuroinflammatory effect may be related to the inhibition of transcription, expression and phosphorylation of signal transducer and activator of transcription 3 (STAT3) that subsequently regulated downstream cyclooxygenase-2 (COX-2) expression and activity. With its excellent BBB permeability and pharmacokinetic properties, compound 18 exhibited significant neuroprotective effects in the hippocampal region of lipopolysaccharides (LPS)-induced mice than former N-salicyloyl tryptamine derivative L7. In conclusion, compound 18 has provided a new approach for the development of highly effective antineuroinflammatory therapeutic drugs targeting microglia activation.


Asunto(s)
Microglía , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores , Factor de Transcripción STAT3 , Triptaminas , Animales , Microglía/efectos de los fármacos , Microglía/metabolismo , Triptaminas/farmacología , Factor de Transcripción STAT3/metabolismo , Ratones , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/síntesis química , Transducción de Señal/efectos de los fármacos , Lipopolisacáridos/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Antiinflamatorios/farmacología , Ratones Endogámicos C57BL , Relación Estructura-Actividad , Masculino , Ciclooxigenasa 2/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo
9.
Eur J Med Chem ; 273: 116500, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38776807

RESUMEN

The deficiency in available targeted agents and frequency of chemoresistance are primary challenges in clinical management of triple-negative breast cancer (TNBC). The aberrant expression of USP21 and JAK2 represents a characterized mechanism of TNBC progression and resistance to paclitaxel (PTX). Despite its clear that high expression of USP21-mediated de-ubiquitination leads to increased levels of JAK2 protein, we lack regulator molecules to dissect the mechanisms that the interaction between USP21 and JAK2 contributes to the phenotype and resistance of TNBC. Here, we report a USP21/JAK2/STAT3 axis-targeting regulator 13c featuring a N-anthraniloyl tryptamine scaffold that showed excellent anti-TNBC potency and promising safety profile. Importantly, the therapeutic potential of using 13c in combination with PTX in PTX-resistant TNBC was demonstrated. This study showcases N-anthraniloyl tryptamine derivatives as a novel anti-TNBC chemotype with a pharmacological mode of action targeting the USP21/JAK2/STAT3 axis and provides a potential therapeutic target for the treatment of TNBC.


Asunto(s)
Antineoplásicos , Janus Quinasa 2 , Factor de Transcripción STAT3 , Neoplasias de la Mama Triple Negativas , Ubiquitina Tiolesterasa , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Janus Quinasa 2/metabolismo , Janus Quinasa 2/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/metabolismo , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Animales , Descubrimiento de Drogas , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Femenino , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Ratones , Paclitaxel/farmacología , Paclitaxel/química
10.
Front Oncol ; 14: 1381251, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699644

RESUMEN

Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its propensity for metastasis and poor prognosis. TNBC evades the body's immune system recognition and attack through various mechanisms, including the Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. This pathway, characterized by heightened activity in numerous solid tumors, exhibits pronounced activation in specific TNBC subtypes. Consequently, targeting the JAK2/STAT3 signaling pathway emerges as a promising and precise therapeutic strategy for TNBC. The signal transduction cascade of the JAK2/STAT3 pathway predominantly involves receptor tyrosine kinases, the tyrosine kinase JAK2, and the transcription factor STAT3. Ongoing preclinical studies and clinical research are actively investigating this pathway as a potential therapeutic target for TNBC treatment. This article comprehensively reviews preclinical and clinical investigations into TNBC treatment by targeting the JAK2/STAT3 signaling pathway using small molecule compounds. The review explores the role of the JAK2/STAT3 pathway in TNBC therapeutics, evaluating the benefits and limitations of active inhibitors and proteolysis-targeting chimeras in TNBC treatment. The aim is to facilitate the development of novel small-molecule compounds that target TNBC effectively. Ultimately, this work seeks to contribute to enhancing therapeutic efficacy for patients with TNBC.

11.
J Biol Chem ; 300(7): 107414, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810697

RESUMEN

Lysyl oxidase-like 2 (LOXL2) is a member of the lysyl oxidase family and has the ability to catalyze the cross-linking of extracellular matrix collagen and elastin. High expression of LOXL2 is related to tumor cell proliferation, invasion, and metastasis. LOXL2 contains 14 exons. Previous studies have found that LOXL2 has abnormal alternative splicing and exon skipping in a variety of tissues and cells, resulting in a new alternatively spliced isoform denoted LOXL2Δ13. LOXL2Δ13 lacks LOXL2WT exon 13, but its encoded protein has greater ability to induce tumor cell proliferation, invasion, and metastasis. However, the molecular events that produce LOXL2Δ13 are still unclear. In this study, we found that overexpression of the splicing factor hnRNPA1 in cells can regulate the alternative splicing of LOXL2 and increase the expression of LOXL2Δ13. The exonic splicing silencer exists at the 3' splice site and 5' splice site of LOXL2 exon 13. HnRNPA1 can bind to the exonic splicing silencer and inhibit the inclusion of exon 13. The RRM domain of hnRNPA1 and phosphorylation of hnRNPA1 at S91 and S95 are important for the regulation of LOXL2 alternative splicing. These results show that hnRNPA1 is a splicing factor that enhances the production of LOXL2Δ13.


Asunto(s)
Empalme Alternativo , Aminoácido Oxidorreductasas , Exones , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/genética , Humanos , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Células HEK293 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
12.
Clin Respir J ; 18(5): e13762, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685799

RESUMEN

OBJECTIVE: This investigation aims to explore alterations in intestinal microecology and immune function among patients with advanced, unresectable lung adenocarcinoma undergoing different outcomes from immunotherapy. METHODS: A cohort of 30 patients diagnosed with advanced unresectable lung adenocarcinoma received sintilimab immunotherapy as a monotherapy. Post four treatment cycles, efficacy was assessed, leading to the segregation of patients into two distinct cohorts: those responsive to treatment and those nonresponsive. Analysis involved observing variations in the abundance, distribution, and composition of fecal intestinal microorganisms pretreatment and posttreatment via 16S rRNA gene sequencing. RESULTS: In this study involving 30 advanced lung adenocarcinoma patients, significant observations were made regarding the impact of immunotherapy on immune function and the gut microbiome composition. Patients were divided into treatment and control groups, revealing that immunotherapy led to a significant increase in CD4+ T cells and a decrease in CD8+ T cells among the treatment-responsive individuals, indicating an enhanced immune response. Furthermore, an in-depth analysis of the gut microbiome showed an increase in diversity and abundance of beneficial bacteria such as Faecalibacterium and Subdoligranulum in the treatment group. These findings highlight the dual effect of immunotherapy on modulating immune function and altering gut microbiome diversity, suggesting its potential therapeutic benefits in improving the health status of patients with advanced lung adenocarcinoma. CONCLUSION: The structuring of gut flora plays a pivotal role in augmenting the efficacy of anti-tumor immunotherapy, underscoring the interplay between intestinal microecology and immune response in cancer treatment outcomes.


Asunto(s)
Adenocarcinoma del Pulmón , Microbioma Gastrointestinal , Inmunoterapia , Neoplasias Pulmonares , Humanos , Microbioma Gastrointestinal/inmunología , Masculino , Femenino , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Persona de Mediana Edad , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/terapia , Adenocarcinoma del Pulmón/tratamiento farmacológico , Inmunoterapia/métodos , Anciano , ARN Ribosómico 16S/genética , Resultado del Tratamiento
13.
Sci Rep ; 14(1): 6691, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509170

RESUMEN

The clinical effects of Schisandra chinensis against human disease are well-documented; however, studies on its application in controlling plant pathogens are limited. Here, we investigated its inhibitory effect on the growth of Alternaria alternata, a fungus which causes significant post-harvest losses on apples, known as black spot disease. S. chinensis fruit extract exhibited strong inhibitory effects on the growth of A. alternata with an EC50 of 1882.00 mg/L. There were 157 compounds identified in the extract by high performance liquid chromatography-mass spectrometry, where benzocaine constituted 14.19% of the extract. Antifungal experiments showed that the inhibitory activity of benzocaine on A. alternata was 43.77-fold higher than the crude extract. The application of benzocaine before and after A. alternata inoculation on apples prevented the pathogen infection and led to mycelial distortion according to scanning electron microscopy. Transcriptome analysis revealed that there were 4226 genes differentially expressed between treated and untreated A. alternata-infected apples with benzocaine. Metabolomics analysis led to the identification of 155 metabolites. Correlation analysis between the transcriptome and metabolome revealed that benzocaine may inhibit A. alternata growth via the beta-alanine metabolic pathway. Overall, S. chinensis extract and benzocaine are environmentally friendly plant-based fungicides with potential to control A. alternata.


Asunto(s)
Fungicidas Industriales , Schisandra , Humanos , Benzocaína/farmacología , Antifúngicos/farmacología , Fungicidas Industriales/farmacología , Alternaria/genética
14.
Anal Chem ; 96(9): 3837-3843, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38384162

RESUMEN

Herein, an antibody-protein-aptamer electrochemical biosensor was designed by highly efficient proximity-induced DNA hybridization on a tetrahedral DNA nanostructure (TDN) for ultrasensitive detection of human insulin-like growth factor-1 (IGF-1). Impressively, the IGF-1 antibody immobilized on the top vertex of the TDN could effectively capture the target protein with less steric effect, and the ferrocene-labeled signal probe (SP) bound on the bottom vertex of the TDN was close to the electrode surface for generating a strong initial signal. In the presence of target protein IGF-1 and an aptamer strand, an antibody-protein-aptamer sandwich could be formed on the top vertex of TDN, which would trigger proximity-induced DNA hybridization to release the SP on the bottom vertex of TDN; therefore, the signal response would decrease dramatically, enhancing the sensitivity of the biosensor. As a result, the linear range of the proposed biosensor for target IGF-1 was 1 fM to 1 nM with the limit of detection down to 0.47 fM, which was much lower than that of the traditional TDN designs on electrochemical biosensors. Surprisingly, the use of this approach offered an innovative approach for the sensitive detection of biomarkers and illness diagnosis.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Humanos , Péptidos Similares a la Insulina , Factor I del Crecimiento Similar a la Insulina , ADN/química , Anticuerpos , Oligonucleótidos , Nanoestructuras/química , Técnicas Electroquímicas , Límite de Detección
15.
Insights Imaging ; 15(1): 57, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411722

RESUMEN

OBJECTIVE: To investigate whether T2-weighted imaging (T2WI)-based intratumoral and peritumoral radiomics can predict extranodal extension (ENE) and prognosis in patients with resectable rectal cancer. METHODS: One hundred sixty-seven patients with resectable rectal cancer including T3T4N + cases were prospectively included. Radiomics features were extracted from intratumoral, peritumoral 3 mm, and peritumoral-mesorectal fat on T2WI images. Least absolute shrinkage and selection operator regression were used for feature selection. A radiomics signature score (Radscore) was built with logistic regression analysis. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of each Radscore. A clinical-radiomics nomogram was constructed by the most predictive radiomics signature and clinical risk factors. A prognostic model was constructed by Cox regression analysis to identify 3-year recurrence-free survival (RFS). RESULTS: Age, cT stage, and lymph node-irregular border and/or adjacent fat invasion were identified as independent clinical risk factors to construct a clinical model. The nomogram incorporating intratumoral and peritumoral 3 mm Radscore and independent clinical risk factors achieved a better AUC than the clinical model in the training (0.799 vs. 0.736) and validation cohorts (0.723 vs. 0.667). Nomogram-based ENE (hazard ratio [HR] = 2.625, 95% CI = 1.233-5.586, p = 0.012) and extramural vascular invasion (EMVI) (HR = 2.523, 95% CI = 1.247-5.106, p = 0.010) were independent risk factors for predicting 3-year RFS. The prognostic model constructed by these two indicators showed good performance for predicting 3-year RFS in the training (AUC = 0.761) and validation cohorts (AUC = 0.710). CONCLUSION: The nomogram incorporating intratumoral and peritumoral 3 mm Radscore and clinical risk factors could predict preoperative ENE. Combining nomogram-based ENE and MRI-reported EMVI may be useful in predicting 3-year RFS. CRITICAL RELEVANCE STATEMENT: A clinical-radiomics nomogram could help preoperative predict ENE, and a prognostic model constructed by the nomogram-based ENE and MRI-reported EMVI could predict 3-year RFS in patients with resectable rectal cancer. KEY POINTS: • Intratumoral and peritumoral 3 mm Radscore showed the most capability for predicting ENE. • Clinical-radiomics nomogram achieved the best predictive performance for predicting ENE. • Combining clinical-radiomics based-ENE and EMVI showed good performance for 3-year RFS.

16.
Front Psychol ; 15: 1309901, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38323158

RESUMEN

Objective: To explore the chain-mediated role of sense of career benefit and sense of career mission in the mechanism of psychological flexibility's effect on nurses' work engagement. Methods: Adopting the convenience sampling method, 1032 nurses in 10 general hospitals in Sichuan Province were surveyed by questionnaires using the General Information Questionnaire, Sense of Occupational Benefit Scale, Sense of Occupational Mission Scale, Psychological Flexibility Scale, and work engagement Scale in August-October 2022, and the model of the chained-mediated effect was constructed and validated. Results: The total psychological resilience score of nurses in 10 general hospitals in Sichuan Province was (91.29 ± 17.38), the total score of sense of occupational benefit was (137.85 ± 21.02), the total score of sense of occupational mission was (40.27 ± 7.37), and the total score of work engagement was (34.99 ± 9.80). The total score of nurses' work engagement was positively correlated with the total scores of psychological elasticity, sense of professional benefit, and sense of professional mission (all P < 0.05). The direct effect of psychological elasticity on nurses' work engagement was significant, with an effect value of 0.321; the chain mediation effects of occupational benefit and occupational mission as separate mediators and the chain mediation effects of the two were 0.039, 0.032, and 0.062, respectively. Conclusion: Nurses' work engagement in 10 general hospitals in Sichuan province is at a medium level, and occupational benefit and occupational mission play a significant role in the mechanism of the psychological elasticity's effects on nurses' work commitment, and the chain mediation effect of occupational mission in the mechanism of psychological elasticity is established. The chain mediation effect in the mechanism was established. Managers should pay attention to nurses with low psychological elasticity, improve their sense of occupational benefit, and enhance their sense of occupational mission in order to further promote the enhancement of work engagement.

18.
Pharmacol Res ; 200: 107052, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181857

RESUMEN

BACKGROUND: The efficacy and safety of Qingda granule (QDG) in managing blood pressure (BP) among grade 1 hypertensive patients with low-moderate risk remain uncertain. METHODS: In the randomized, double-blind, double dummy, non-inferiority and multicenter trial, 552 patients with grade 1 hypertension at low-moderate risk were assigned at a ratio of 1:1 to receive either QDG or valsartan for 4 weeks, followed up by a subsequent 4 weeks. RESULTS: Post-treatment, clinic systolic/diastolic BPs (SBP/DBP) were reduced by a mean change of 9.18/4.04 mm Hg in the QDG group and 9.85/5.05 mm Hg in the valsartan group (SBP P = 0.47, DBP P = 0.16). Similarly, 24-hour, daytime and nighttime BPs were proportional in both groups (P > 0.05) after 4 weeks treatment. After discontinuing medications for 4 weeks, the mean reduction of clinic SBP/DBP were 0.29/0.57 mm Hg in the QDG group compared to -1.59/-0.48 mm Hg in the valsartan group (SBP P = 0.04, DBP P = 0.04). Simultaneously, the 24-hour SBP/DBP were reduced by 0.9/0.31 mm Hg in the QDG group and -1.66/-1.08 mm Hg in the valsartan group (SBP P = 0.006, DBP P = 0.02). And similar results were observed regarding the outcomes of daytime and nighttime BPs. There was no difference in occurrence of adverse events between two groups (P > 0.05). CONCLUSION: QDG proves to be efficacious for grade 1 hypertension at a low-to-medium risk, even after discontinuation of the medication for 4 weeks. These findings provide a promising option for managing grade 1 hypertension and suggest the potential for maintaining stable BP through intermittent administration of QDG. TRIAL REGISTRATION: ChiCTR2000033890.


Asunto(s)
Antihipertensivos , Medicamentos Herbarios Chinos , Hipertensión , Humanos , Antihipertensivos/efectos adversos , Presión Sanguínea , China , Método Doble Ciego , Tetrazoles/efectos adversos , Valsartán/efectos adversos
20.
Journal of Clinical Hepatology ; (12): 312-318, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1007246

RESUMEN

ObjectiveTo investigate the role and possible mechanism of action of rhubarb decoction (RD) retention enema in improving inflammatory damage of brain tissue in a rat model of mild hepatic encephalopathy (MHE). MethodsA total of 60 male Sprague-Dawley rats were divided into blank group (CON group with 6 rats) and chronic liver cirrhosis modeling group with 54 rats using the complete randomization method. After 12 weeks, 40 rats with successful modeling which were confirmed to meet the requirements for MHE model by the Morris water maze test were randomly divided into model group (MOD group), lactulose group (LT group), low-dose RD group (RD1 group), middle-dose RD group (RD2 group), and high-dose RD group (RD3 group), with 8 rats in each group. The rats in the CON group and the MOD group were given retention enema with 2 mL of normal saline once a day; the rats in the LT group were given retention enema with 2 mL of lactulose at a dose of 22.5% once a day; the rats in the RD1, RD2, and RD3 groups were given retention enema with 2 mL RD at a dose of 2.5, 5.0, and 7.5 g/kg, respectively, once a day. After 10 days of treatment, the Morris water maze test was performed to analyze the spatial learning and memory abilities of rats. The rats were analyzed from the following aspects: behavioral status; the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) and the level of blood ammonia; pathological changes of liver tissue and brain tissue; the mRNA and protein expression levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) in brain tissue. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsCompared with the MOD group, the RD1, RD2, and RD3 groups had a significantly shorter escape latency (all P<0.01), significant reductions in the levels of ALT, AST, IL-1β, IL-6, TNF-α, and blood ammonia (all P<0.05), significant alleviation of the degeneration, necrosis, and inflammation of hepatocytes and brain cells, and significant reductions in the mRNA and protein expression levels of PI3K, AKT, and mTOR in brain tissue (all P<0.05), and the RD3 group had a better treatment outcome than the RD1 and RD2 groups. ConclusionRetention enema with RD can improve cognitive function and inflammatory damage of brain tissue in MHE rats, possibly by regulating the PI3K/AKT/mTOR signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA