Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Proc Natl Acad Sci U S A ; 121(6): e2309333121, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38289951

We present improved estimates of air-sea CO2 exchange over three latitude bands of the Southern Ocean using atmospheric CO2 measurements from global airborne campaigns and an atmospheric 4-box inverse model based on a mass-indexed isentropic coordinate (Mθe). These flux estimates show two features not clearly resolved in previous estimates based on inverting surface CO2 measurements: a weak winter-time outgassing in the polar region and a sharp phase transition of the seasonal flux cycles between polar/subpolar and subtropical regions. The estimates suggest much stronger summer-time uptake in the polar/subpolar regions than estimates derived through neural-network interpolation of pCO2 data obtained with profiling floats but somewhat weaker uptake than a recent study by Long et al. [Science 374, 1275-1280 (2021)], who used the same airborne data and multiple atmospheric transport models (ATMs) to constrain surface fluxes. Our study also uses moist static energy (MSE) budgets from reanalyses to show that most ATMs tend to have excessive diabatic mixing (transport across moist isentrope, θe, or Mθe surfaces) at high southern latitudes in the austral summer, which leads to biases in estimates of air-sea CO2 exchange. Furthermore, we show that the MSE-based constraint is consistent with an independent constraint on atmospheric mixing based on combining airborne and surface CO2 observations.

3.
Nat Plants ; 9(1): 45-57, 2023 01.
Article En | MEDLINE | ID: mdl-36564631

Net-zero greenhouse gas (GHG) emissions targets are driving interest in opportunities for biomass-based negative emissions and bioenergy, including from marine sources such as seaweed. Yet the biophysical and economic limits to farming seaweed at scales relevant to the global carbon budget have not been assessed in detail. We use coupled seaweed growth and technoeconomic models to estimate the costs of global seaweed production and related climate benefits, systematically testing the relative importance of model parameters. Under our most optimistic assumptions, sinking farmed seaweed to the deep sea to sequester a gigaton of CO2 per year costs as little as US$480 per tCO2 on average, while using farmed seaweed for products that avoid a gigaton of CO2-equivalent GHG emissions annually could return a profit of $50 per tCO2-eq. However, these costs depend on low farming costs, high seaweed yields, and assumptions that almost all carbon in seaweed is removed from the atmosphere (that is, competition between phytoplankton and seaweed is negligible) and that seaweed products can displace products with substantial embodied non-CO2 GHG emissions. Moreover, the gigaton-scale climate benefits we model would require farming very large areas (>90,000 km2)-a >30-fold increase in the area currently farmed. Our results therefore suggest that seaweed-based climate benefits may be feasible, but targeted research and demonstrations are needed to further reduce economic and biophysical uncertainties.


Climate Change , Seaweed , Carbon Dioxide , Agriculture/methods , Carbon
4.
Glob Chang Biol ; 28(7): 2236-2258, 2022 Apr.
Article En | MEDLINE | ID: mdl-34931401

Climate impacts are not always easily discerned in wild populations as detecting climate change signals in populations is challenged by stochastic noise associated with natural climate variability, variability in biotic and abiotic processes, and observation error in demographic rates. Detection of the impact of climate change on populations requires making a formal distinction between signals in the population associated with long-term climate trends from those generated by stochastic noise. The time of emergence (ToE) identifies when the signal of anthropogenic climate change can be quantitatively distinguished from natural climate variability. This concept has been applied extensively in the climate sciences, but has not been explored in the context of population dynamics. Here, we outline an approach to detecting climate-driven signals in populations based on an assessment of when climate change drives population dynamics beyond the envelope characteristic of stochastic variations in an unperturbed state. Specifically, we present a theoretical assessment of the time of emergence of climate-driven signals in population dynamics ( ToE pop ). We identify the dependence of ToE pop on the magnitude of both trends and variability in climate and also explore the effect of intrinsic demographic controls on ToE pop . We demonstrate that different life histories (fast species vs. slow species), demographic processes (survival, reproduction), and the relationships between climate and demographic rates yield population dynamics that filter climate trends and variability differently. We illustrate empirically how to detect the point in time when anthropogenic signals in populations emerge from stochastic noise for a species threatened by climate change: the emperor penguin. Finally, we propose six testable hypotheses and a road map for future research.


Climate Change , Spheniscidae , Animals , Population Dynamics , Reproduction
5.
Science ; 374(6572): 1275-1280, 2021 Dec 03.
Article En | MEDLINE | ID: mdl-34855495

The Southern Ocean plays an important role in determining atmospheric carbon dioxide (CO2), yet estimates of air-sea CO2 flux for the region diverge widely. In this study, we constrained Southern Ocean air-sea CO2 exchange by relating fluxes to horizontal and vertical CO2 gradients in atmospheric transport models and applying atmospheric observations of these gradients to estimate fluxes. Aircraft-based measurements of the vertical atmospheric CO2 gradient provide robust flux constraints. We found an annual mean flux of ­0.53 ± 0.23 petagrams of carbon per year (net uptake) south of 45°S during the period 2009­2018. This is consistent with the mean of atmospheric inversion estimates and surface-ocean partial pressure of CO2 (Pco2)­based products, but our data indicate stronger annual mean uptake than suggested by recent interpretations of profiling float observations.

6.
Proc Biol Sci ; 288(1963): 20211337, 2021 11 24.
Article En | MEDLINE | ID: mdl-34814747

Climate change has led to phenological shifts in many species, but with large variation in magnitude among species and trophic levels. The poster child example of the resulting phenological mismatches between the phenology of predators and their prey is the great tit (Parus major), where this mismatch led to directional selection for earlier seasonal breeding. Natural climate variability can obscure the impacts of climate change over certain periods, weakening phenological mismatching and selection. Here, we show that selection on seasonal timing indeed weakened significantly over the past two decades as increases in late spring temperatures have slowed down. Consequently, there has been no further advancement in the date of peak caterpillar food abundance, while great tit phenology has continued to advance, thereby weakening the phenological mismatch. We thus show that the relationships between temperature, phenologies of prey and predator, and selection on predator phenology are robust, also in times of a slowdown of warming. Using projected temperatures from a large ensemble of climate simulations that take natural climate variability into account, we show that prey phenology is again projected to advance faster than great tit phenology in the coming decades, and therefore that long-term global warming will intensify phenological mismatches.


Global Warming , Passeriformes , Animals , Climate Change , Reproduction , Seasons , Temperature
7.
J R Soc Interface ; 18(175): 20200799, 2021 02.
Article En | MEDLINE | ID: mdl-33622144

Loggerhead sea turtles (Caretta caretta) nest globally on sandy beaches, with hatchlings dispersing into the open ocean. Where these juveniles go and what habitat they rely on remains a critical research question for informing conservation priorities. Here a high-resolution Earth system model is used to determine the biophysical geography of favourable ocean habitat for loggerhead sea turtles globally during their first year of life on the basis of ocean current transport, thermal constraints and food availability (defined here as the summed lower trophic level carbon biomass). Dispersal is simulated from eight major nesting sites distributed across the globe in four representative years using particle tracking. Dispersal densities are identified for all turtles, and for the top 15% 'best-fed' turtles that have not encountered metabolically unfavourable temperatures. We find that, globally, rookeries are positioned to disperse to regions where the lower trophic biomass is greatest within loggerheads' thermal range. Six out of the eight nesting sites are associated with strong coastal boundary currents that rapidly transport hatchlings to subtropical-subpolar gyre boundaries; narrow spatial migratory corridors exist for 'best-fed' turtles associated with these sites. Two other rookeries are located in exceptionally high-biomass tropical regions fuelled by natural iron fertilization. 'Best-fed' turtles tend to be associated with lower temperatures, highlighting the inverse relationship between temperature and lower trophic biomass. The annual mean isotherms between 20°C and the thermal tolerance of juvenile loggerheads are a rough proxy for favourable habitat for loggerheads from rookeries associated with boundary currents. Our results can be used to constrain regions for conservation efforts for each subpopulation, and better identify foraging habitat for this critical early life stage.


Turtles , Animals , Ecosystem , Geography , Temperature
8.
Global Biogeochem Cycles ; 34(8): e2019GB006453, 2020 Aug.
Article En | MEDLINE | ID: mdl-32999530

Anthropogenically forced changes in ocean biogeochemistry are underway and critical for the ocean carbon sink and marine habitat. Detecting such changes in ocean biogeochemistry will require quantification of the magnitude of the change (anthropogenic signal) and the natural variability inherent to the climate system (noise). Here we use Large Ensemble (LE) experiments from four Earth system models (ESMs) with multiple emissions scenarios to estimate Time of Emergence (ToE) and partition projection uncertainty for anthropogenic signals in five biogeochemically important upper-ocean variables. We find ToEs are robust across ESMs for sea surface temperature and the invasion of anthropogenic carbon; emergence time scales are 20-30 yr. For the biological carbon pump, and sea surface chlorophyll and salinity, emergence time scales are longer (50+ yr), less robust across the ESMs, and more sensitive to the forcing scenario considered. We find internal variability uncertainty, and model differences in the internal variability uncertainty, can be consequential sources of uncertainty for projecting regional changes in ocean biogeochemistry over the coming decades. In combining structural, scenario, and internal variability uncertainty, this study represents the most comprehensive characterization of biogeochemical emergence time scales and uncertainty to date. Our findings delineate critical spatial and duration requirements for marine observing systems to robustly detect anthropogenic change.

9.
Curr Clim Change Rep ; 6(3): 95-119, 2020.
Article En | MEDLINE | ID: mdl-32837849

Purpose of Review: The changes or updates in ocean biogeochemistry component have been mapped between CMIP5 and CMIP6 model versions, and an assessment made of how far these have led to improvements in the simulated mean state of marine biogeochemical models within the current generation of Earth system models (ESMs). Recent Findings: The representation of marine biogeochemistry has progressed within the current generation of Earth system models. However, it remains difficult to identify which model updates are responsible for a given improvement. In addition, the full potential of marine biogeochemistry in terms of Earth system interactions and climate feedback remains poorly examined in the current generation of Earth system models. Summary: Increasing availability of ocean biogeochemical data, as well as an improved understanding of the underlying processes, allows advances in the marine biogeochemical components of the current generation of ESMs. The present study scrutinizes the extent to which marine biogeochemistry components of ESMs have progressed between the 5th and the 6th phases of the Coupled Model Intercomparison Project (CMIP).

10.
Nat Commun ; 11(1): 2166, 2020 05 01.
Article En | MEDLINE | ID: mdl-32358499

The California Current System (CCS) sustains economically valuable fisheries and is particularly vulnerable to ocean acidification, due to its natural upwelling of carbon-enriched waters that generate corrosive conditions for local ecosystems. Here we use a novel suite of retrospective, initialized ensemble forecasts with an Earth system model (ESM) to predict the evolution of surface pH anomalies in the CCS. We show that the forecast system skillfully predicts observed surface pH variations a year in advance over a naive forecasting method, with the potential for skillful prediction up to five years in advance. Skillful predictions of surface pH are mainly derived from the initialization of dissolved inorganic carbon anomalies that are subsequently transported into the CCS. Our results demonstrate the potential for ESMs to provide skillful predictions of ocean acidification on large scales in the CCS. Initialized ESMs could also provide boundary conditions to improve high-resolution regional forecasting systems.

11.
Ecol Appl ; 28(3): 749-760, 2018 04.
Article En | MEDLINE | ID: mdl-29509310

The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3-d repeat low-Earth orbit could sample 30-km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.


Biodiversity , Remote Sensing Technology/instrumentation , Oceans and Seas , Phytoplankton
12.
Nature ; 530(7591): 469-72, 2016 Feb 25.
Article En | MEDLINE | ID: mdl-26911782

The ocean has absorbed 41 per cent of all anthropogenic carbon emitted as a result of fossil fuel burning and cement manufacture. The magnitude and the large-scale distribution of the ocean carbon sink is well quantified for recent decades. In contrast, temporal changes in the oceanic carbon sink remain poorly understood. It has proved difficult to distinguish between air-to-sea carbon flux trends that are due to anthropogenic climate change and those due to internal climate variability. Here we use a modelling approach that allows for this separation, revealing how the ocean carbon sink may be expected to change throughout this century in different oceanic regions. Our findings suggest that, owing to large internal climate variability, it is unlikely that changes in the rate of anthropogenic carbon uptake can be directly observed in most oceanic regions at present, but that this may become possible between 2020 and 2050 in some regions.


Carbon Dioxide/analysis , Carbon Sequestration , Climate Change/statistics & numerical data , Observation , Seawater/chemistry , Atmosphere/chemistry , Carbon Cycle , Ecosystem , Human Activities , Models, Theoretical , Oceans and Seas , Time Factors
...