Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Onco Targets Ther ; 12: 4517-4532, 2019.
Article En | MEDLINE | ID: mdl-31354287

Background: Cervical carcinoma is one of the most common malignant gynecological tumors and is associated with high rates of morbidity and mortality. Early diagnosis and early treatment can reduce the mortality rate of cervical cancer. However, there is still no specific biomarkers for the diagnosis and detection of cervical cancer prognosis. Therefore, it is greatly urgent in searching biomarkers correlated with the diagnosis and prognosis of cervical cancer. Results: The mRNA and microRNA expression profile datasets (GSE7803, GSE9750, GSE63514, and GSE30656) were downloaded from the Gene Expression Omnibus database (GEO). The three microarray datasets were integrated to one via integrated bioinformatics. Differentially expressed genes (DEGs) and microRNAs (DEMs) were obtained by R software. The protein-protein interaction (PPI) networks of the DEGs were performed from the STRING database and further visualized by Cytoscape software. A total of 83 DEGs and 14 DEMs were screened from the microarray expression profile datasets. The miRNAs validated to be associated with cervical cancer were obtained using HMDD online website and the target genes of DEMs were identified using the miRWalk2.0 online database. ESR1, PPP1R3C, NSG1, and TMPRSS11D were the gene targets of hsa-miR-21; the targets of hsa-miR-16 were GYS2, ENDOU, and KLF4. These targets were all downregulated in cervical cancer. Finally, we verified the expression of those targets in cervical tissues from TCGA and GTEx databases and analyzed their relationship with survival of cervical cancer patients. In the end, the expression of key genes in cervical cancer tissues was verified via experiment method, we found KLF4 and ESR1 were downregulated in tumor tissues. Conclusion: This study indicates that KLF4 and ESR1 are downregulated by the upregulated miR21 and miRNA16 in cervical cancer, respectively, using bioinformatics analysis, and the lower expression of KLF4 and ESR1 is closely related to the poor prognosis. They might be of clinical significance for the diagnosis and prognosis of cervical cancer, and provide effective targets for the treatment of cervical cancer.

2.
Int J Biol Macromol ; 135: 233-239, 2019 Aug 15.
Article En | MEDLINE | ID: mdl-31128182

The antibacterial materials with biodegradable and biocompatible nature have unveiled novel prospects to combat the bacterial infection, which has always been a troubling and challenging issue in the biomedical field. In this study, chitosan (CS) and Titanium dioxide (TiO2) microparticles were well immobilized on polylactic acid (PLA) mats by electrospinning-electrospraying hybrid technique. The surface morphology, chemical composition and characteristic group of the mats were characterized. The results indicated that CS/TiO2 microparticles were successfully immobilized on the surface of PLA mats. In addition, the antibacterial activity and cytotoxicity of the composite mats were investigated to confirm that the layer-by-layer immobilization of CS/TiO2 microparticles via electrospraying could enhance the antibacterial effect and biocompatibility of the mats. At the same time, the PLA-(CS/TiO2-1.5%)1.5 mats exhibited the best performance in antibacterial effect (up to about 95%) and cell viability (nearly 92% and 95% at 3 d and 5 d). The composite mats have great potential as an effective antibacterial material for the biomedical applications.


Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Nanofibers/chemistry , Titanium/chemistry , Animals , Bacteria/drug effects , Cell Survival , Fibroblasts , Mice , Microbial Sensitivity Tests , Nanofibers/ultrastructure , Nanostructures/chemistry , Nanostructures/ultrastructure , Spectrum Analysis
3.
Int J Biol Macromol ; 130: 348-356, 2019 Jun 01.
Article En | MEDLINE | ID: mdl-30817968

Pelvic floor dysfunction diseases (PFD) become more prevalent with the increase of elderly population, and complications of pelvic floor reconstructive surgery (e.g. infection and exposure of mesh) have been troubling to patients and gynecologists. In this study, the nanofibrous mats were prepared by alternately depositing chitosan (CS) and silk fibroin (SF) on Nylon6 (N6) nanofibrous mats via layer-by-layer (LBL) technique. The as-prepared mats were characterized. The results showed that CS and SF molecules were successfully assembled on the nanofibers. Additionally, after LBL modification, the hydrophilicity of the nanofibrous mats was reduced and the mechanical properties were improved. Furthermore, the antibacterial activity of the LBL-structured mats reached >95% inhibiting Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The in vitro cell co-culture experiments indicated that LBL-structured mats had smaller toxic effects and more excellent biocompatibility to L929 fibroblasts, especially the mats with 15 bilayers coated films. Hence, the LBL-structured mats are promising materials for pelvic floor reconstruction to reduce postoperative pelvic complication rates.


Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Chitosan/chemistry , Fibroins/chemical synthesis , Nanofibers/chemistry , Animals , Anti-Bacterial Agents/toxicity , Biocompatible Materials/toxicity , Cell Adhesion/drug effects , Cell Survival/drug effects , Escherichia coli/drug effects , Fibroblasts/cytology , Fibroblasts/drug effects , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Mechanical Phenomena , Mice , Staphylococcus aureus/drug effects , Water/chemistry
...