Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(16): 25840-25849, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710459

RESUMEN

We demonstrate experimentally that frequency resolved optical switching (FROSt) can be used to characterize ultra-broadband pulses at high repetition rates up to 500 kHz. Specifically, we present the complete temporal characterization of an optical parametric amplifier (OPA), from the supercontinuum (SC) to the second stage of amplification. Simultaneous characterization of co-propagating signal and idler pulses enables retrieval of their group delay, as well as their temporal phase and intensity. Our study focuses on an extensive frequency range spanning the infrared region (1.2 to 2.4 µm) and confirms the strength and convenience of FROSt as a single tool for characterizing a wide range of pulses at high repetition rates.

2.
Opt Express ; 30(5): 7968-7975, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299548

RESUMEN

In this work, we demonstrate the sensitivity of the frequency-resolved optical switching (FROSt) technique to detect a small amount of spectral phase shift for the precise characterization of ultrashort laser pulses. We characterized fs pulses centered at 1.75 µm that are spectrally broadened up to 700 nm of bandwidth in a hollow-core fiber and subsequently compressed down to 2.3 optical cycle duration by propagation in the air at atmospheric pressure. By inserting thin fused silica windows of different thicknesses in the beam path, we accurately retrieve group delay dispersion (GDD) variations as small as 10 fs2. Such GDD variations correspond to a change of the pulse duration of only 0.2 fs for a Fourier transform limited 2-cycle pulse at 1.75 µm (i.e., 11.8 fs). The capability to measure such tiny temporal variations thus demonstrates that the FROSt technique has sufficient sensitivity to precisely characterize single-cycle pulses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...