Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 216: 192-203, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28545947

RESUMEN

Among the chemical pretreatments available for pretreating biomass, the inorganic salt is considered to be a relatively new but simple reagent that offers comparable pentose (C5) sugar recoveries as the conventional dilute acid hydrolysis. This study investigated the effects of different concentrations (1.5-6.0% (v/v)) of H2O2 or Na2S2O8 in facilitating CuSO4·5H2O pretreatment for improving pentose sugar recovery from oil palm fronds. The best result was observed when 0.2 mol/L of CuSO4·5H2O was integrated with 4.5% (v/v) of Na2S2O8 to recover 8.2 and 0.9 g/L of monomeric xylose and arabinose, respectively in the liquid fraction. On the other hand, an addition of 1.5% (v/v) of H2O2 yielded approximately 74% lesser total pentose sugars as compared to using 4.5% (v/v) Na2S2O8. By using CuSO4·5H2O alone (control), only 0.8 and 1.0 g/L xylose and arabinose, respectively could be achieved. The results mirrored the importance of using chemical additives together with the inorganic salt pretreatment of oil palm fronds. Thus, an addition of 4.5% (v/v) of Na2S2O8 during CuSO4·5H2O pretreatment of oil palm fronds at 120 °C and 30 min was able to attain a total pentose sugar yield up to ∼40%.


Asunto(s)
Sulfato de Cobre , Azúcares , Biomasa , Peróxido de Hidrógeno , Hidrólisis , Eliminación de Residuos , Xilosa
2.
Bioresour Technol ; 249: 818-825, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29136937

RESUMEN

Deep eutectic solvents (DESs) have received considerable attention in recent years due to their low cost, low toxicity, and biodegradable properties. In this study, a sequential pretreatment comprising of a DES (choline chloride:urea in a ratio of 1:2) and divalent inorganic salt (CuCl2) was evaluated, with the aim of recovering xylose from oil palm fronds (OPF). At a solid-to-liquid ratio of 1:10 (w/v), DES alone was ineffective in promoting xylose extraction from OPF. However, a combination of DES (120°C, 4h) and 0.4mol/L of CuCl2 (120°C, 30min) resulted in a pretreatment hydrolysate containing 14.76g/L of xylose, remarkably yielding 25% more xylose than the CuCl2-only pretreatment (11.87g/L). Characterization studies such as FE-SEM, BET, XRD, and FTIR confirmed the delignification of OPF when DES was implemented. Thus, the use of this integrated pretreatment system enabled xylose recoveries which were comparable with other traditional pretreatments.


Asunto(s)
Xilosa , Biomasa , Lignina , Cloruro de Sodio , Solventes
3.
J Agric Food Chem ; 63(38): 8349-63, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26325225

RESUMEN

Currently, the transformation of lignocellulosic biomass into value-added products such as reducing sugars is garnering attention worldwide. However, efficient hydrolysis is usually hindered by the recalcitrant structure of the biomass. Many pretreatment technologies have been developed to overcome the recalcitrance of lignocellulose such that the components can be reutilized more effectively to enhance sugar recovery. Among all of the utilized pretreatment methods, inorganic salt pretreatment represents a more novel method and offers comparable sugar recovery with the potential for reducing costs. The use of inorganic salt also shows improved performance when it is integrated with other pretreatment technologies. Hence, this paper is aimed to provide a detailed overview of the current situation for lignocellulosic biomass and its physicochemical characteristics. Furthermore, this review discusses some recent studies using inorganic salt for pretreating biomass and the mechanisms involved during the process. Finally, some prospects and challenges using inorganic salt are highlighted.


Asunto(s)
Biotecnología/tendencias , Lignina/química , Monosacáridos/química , Biotecnología/métodos , Hidrólisis , Oxidación-Reducción , Cloruro de Sodio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA