Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 15(12): 5809-5815, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36857670

RESUMEN

Stacked hetero-structures of two-dimensional materials allow for a design of interactions with corresponding electronic and mechanical properties. We report structure, work function, and frictional properties of 1 to 4 layers of MoS2 grown by chemical vapor deposition on epitaxial graphene on SiC(0001). Experiments were performed by atomic force microscopy in ultra-high vacuum. Friction is dominated by adhesion which is mediated by a deformation of the layers to adapt the shape of the tip apex. Friction decreases with increasing number of MoS2 layers as the bending rigidity leads to less deformation. The dependence of friction on applied load and bias voltage can be attributed to variations in the atomic potential corrugation of the interface, which is enhanced by both load and applied bias. Minimal friction is obtained when work function differences are compensated.

2.
Nanotechnology ; 32(14): 145707, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33326949

RESUMEN

As different low-dimensional materials are sought to be incorporated into microelectronic devices, graphene integration is dependent on the development of band gap opening strategies. Amidst the different methods currently investigated, application of strain and use of electronic quantum confinement have shown promising results. In the present work, epitaxial graphene nanoribbons (GNR), formed by surface graphitization of SiC (0001) on crystalline step edges, were submitted to photochemical chlorination. The incorporation of Cl into the buffer layer underlying graphene increased the compressive uniaxial strain in the ribbons. Such method is a promising tool for tuning the band gap of GNRs.

3.
ACS Appl Mater Interfaces ; 12(7): 8897-8907, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-31971775

RESUMEN

Combining graphene and the insulating hexagonal boron nitride (h-BN) into two-dimensional heterostructures is promising for novel, atomically thin electronic nanodevices. A heteroepitaxial growth, in which these materials are grown on top of each other, will be crucial for their scalable device integration. However, during this so-called van der Waals epitaxy, not only the atomically thin substrate itself must be considered but also the influences from the supporting substrate below it. Here, we report not only a substantial difference between the formation of h-BN on single- (SLG) and on bi-layer epitaxial graphene (BLG) on SiC, but also vice versa, that the van der Waals epitaxy of h-BN at growth temperatures well below 1000 °C affects the varying number of graphene layers differently. Our results clearly demonstrate that the additional graphene layer in BLG enhances the distance to the corrugated, carbon-rich interface of the supporting SiC substrate and thereby diminishes its influence on the van der Waals epitaxy, leading to a homogeneous formation of a smooth, atomically thin heterostructure, which will be required for a scalable device integration of 2D heterostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA