Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Today Bio ; 22: 100778, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37664796

RESUMEN

The interface tissue between bone and soft tissues, such as tendon and ligament (TL), is highly prone to injury. Although different biomaterials have been developed for TL regeneration, few address the challenges of the TL-bone interface. Here, we aim to develop novel hybrid nanocomposites based on poly(p-dioxanone) (PDO), poly(lactide-co-caprolactone) (LCL), and hydroxyapatite (HA) nanoparticles suitable for TL-bone interface repair. Nanocomposites, containing 3-10% of both unmodified and chemically modified hydroxyapatite (mHA) with a silane coupling agent. We then explored biocompatibility through in vitro and in vivo studies using a subcutaneous mouse model. Through different characterisation tests, we found that mHA increases tensile properties, creates rougher surfaces, and reduces crystallinity and hydrophilicity. Morphological observations indicate that mHA nanoparticles are attracted by PDO rather than LCL phase, resulting in a higher degradation rate for mHA group. We found that adding the 5% of nanoparticles gives a balance between the properties. In vitro experiments show that osteoblasts' activities are more affected by increasing the nanoparticle content compared with fibroblasts. Animal studies indicate that both HA and mHA nanoparticles (10%) can reduce the expression of pro-inflammatory cytokines after six weeks of implantation. In summary, this work highlights the potential of PDO/LCL/HA nanocomposites as an excellent biomaterial for TL-bone interface tissue engineering applications.

2.
Development ; 150(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36912250

RESUMEN

Periosteal stem and progenitor cells (PSPCs) are major contributors to bone maintenance and repair. Deciphering the molecular mechanisms that regulate their function is crucial for the successful generation and application of future therapeutics. Here, we pinpoint Hox transcription factors as necessary and sufficient for periosteal stem cell function. Hox genes are transcriptionally enriched in periosteal stem cells and their overexpression in more committed progenitors drives reprogramming to a naïve, self-renewing stem cell-like state. Crucially, individual Hox family members are expressed in a location-specific manner and their stem cell-promoting activity is only observed when the Hox gene is matched to the anatomical origin of the PSPC, demonstrating a role for the embryonic Hox code in adult stem cells. Finally, we demonstrate that Hoxa10 overexpression partially restores the age-related decline in fracture repair. Together, our data highlight the importance of Hox genes as key regulators of PSPC identity in skeletal homeostasis and repair.


Asunto(s)
Células Madre Adultas , Genes Homeobox , Humanos , Adulto , Genes Homeobox/genética , Proteínas de Homeodominio/genética , Células Madre , Huesos
3.
Bone ; 157: 116324, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34998981

RESUMEN

Tissue injury leads to the well-orchestrated mobilization of systemic and local innate and adaptive immune cells. During aging, immune cell recruitment is dysregulated, resulting in an aberrant inflammatory response that is detrimental for successful healing. Here, we precisely define the systemic and local immune cell response after femur fracture in young and aging mice and identify increased toll-like receptor signaling as a potential culprit for the abnormal immune cell recruitment observed in aging animals. Myd88, an upstream regulator of TLR-signaling lies at the core of this aging phenotype, and local treatment of femur fractures with a Myd88 antagonist in middle-aged mice reverses the aging phenotype of impaired fracture healing, thus offering a promising therapeutic target that could overcome the negative impact of aging on bone regeneration.


Asunto(s)
Fracturas Óseas , Factor 88 de Diferenciación Mieloide , Inmunidad Adaptativa , Envejecimiento , Animales , Regeneración Ósea , Curación de Fractura , Inmunidad Innata , Ratones , Factor 88 de Diferenciación Mieloide/genética
4.
Aging (Albany NY) ; 13(10): 13421-13429, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035186

RESUMEN

Aging tissues undergo a progressive decline in regenerative potential. This decline in regenerative responsiveness has been attributed to changes in tissue-specific stem cells and their niches. In bone, aged skeletal stem/progenitor cell dysfunction is characterized by decreased frequency and impaired osteogenic differentiation potential. This aging phenotype ultimately results in compromised regenerative responsiveness to injury. The age-associated increase of inflammatory mediators, known as inflamm-aging, has been identified as the main culprit driving skeletal stem cell dysfunction. Here, we utilized a mouse model of parabiosis to decouple aging from inflammation. Using the Nfkb1-/- mouse as a model of inflamm-aging, we demonstrate that a shared systemic circulation between a wild-type and Nfkb1-/- mouse results in an aging phenotype of the wild-type skeletal stem and progenitor cells, shown by CFU-fs and osteogenic and adipogenic differentiation assays. Our findings demonstrate that exposure to an inflammatory secretome results in a phenotype similar to the one observed in aging.


Asunto(s)
Envejecimiento/patología , Inflamación/metabolismo , Inflamación/patología , Músculo Esquelético/patología , FN-kappa B/metabolismo , Células Madre/metabolismo , Animales , Médula Ósea/patología , Diferenciación Celular , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...