Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 12: 1009328, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204651

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China in December 2019 and caused a global pandemic resulting in millions of deaths and tens of millions of patients positive tests. While studies have shown a D614G mutation in the viral spike protein are more transmissible, the effects of this and other mutations on the host response, especially at the cellular level, are yet to be fully elucidated. In this experiment we infected normal human bronchial epithelial (NHBE) cells with the Washington (D614) strain or the New York (G614) strains of SARS-CoV-2. We generated RNA sequencing data at 6, 12, and 24 hours post-infection (hpi) to improve our understanding of how the intracellular host response differs between infections with these two strains. We analyzed these data with a bioinformatics pipeline that identifies differentially expressed genes (DEGs), enriched Gene Ontology (GO) terms and dysregulated signaling pathways. We detected over 2,000 DEGs, over 600 GO terms, and 29 affected pathways between the two infections. Many of these entities play a role in immune signaling and response. A comparison between strains and time points showed a higher similarity between matched time points than across different time points with the same strain in DEGs and affected pathways, but found more similarity between strains across different time points when looking at GO terms. A comparison of the affected pathways showed that the 24hpi samples of the New York strain were more similar to the 12hpi samples of the Washington strain, with a large number of pathways related to translation being inhibited in both strains. These results suggest that the various mutations contained in the genome of these two viral isolates may cause distinct effects on the host transcriptional response in infected host cells, especially relating to how quickly translation is dysregulated after infection. This comparison of the intracellular host response to infection with these two SARS-CoV-2 isolates suggest that some of the mechanisms associated with more severe disease from these viruses could include virus replication, metal ion usage, host translation shutoff, host transcript stability, and immune inhibition.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , New York , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas Virales , Washingtón
2.
Arch Pathol Lab Med ; 145(10): 1212-1220, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34181714

RESUMEN

CONTEXT.­: Emerging evidence shows correlation between the presence of neutralization antibodies (nAbs) and protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently available commercial serology assays lack the ability to specifically identify nAbs. An enzyme-linked immunosorbent assay-based nAb assay (GenScript cPass neutralization antibody assay) has recently received emergency use authorization from the Food and Drug Administration. OBJECTIVE.­: To evaluate the performance characteristics of this assay and compare and correlate it with the commercial assays that detect SARS-CoV-2-specific immunoglobulin G (IgG). DESIGN.­: Specimens from SARS-COV-2 infected patients (n = 124), healthy donors obtained prepandemic (n = 100), and patients with non-coronavirus disease 2019 (COVID-19) respiratory infections (n = 92) were analyzed using this assay. Samples with residual volume were also tested on 3 commercial serology platforms (Abbott, Euroimmun, Siemens). Twenty-eight randomly selected specimens from patients with COVID-19 and 10 healthy controls were subjected to a plaque reduction neutralization test. RESULTS.­: The cPass assay exhibited 96.1% (95% CI, 94.9%-97.3%) sensitivity (at >14 days post-positive PCR), 100% (95% CI, 98.0%-100.0%) specificity, and zero cross-reactivity for the presence of non-COVID-19 respiratory infections. When compared with the plaque reduction assay, 97.4% (95% CI, 96.2%-98.5%) qualitative agreement and a positive correlation (R2 = 0.76) was observed. Comparison of IgG signals from each of the commercial assays with the nAb results from plaque reduction neutralization test/cPass assays displayed greater than 94.7% qualitative agreement and correlations with R2 = 0.43/0.68 (Abbott), R2 = 0.57/0.85 (Euroimmun), and R2 = 0.39/0.63 (Siemens), respectively. CONCLUSIONS.­: The combined data support the use of cPass assay for accurate detection of the nAb response. Positive IgG results from commercial assays associated reasonably with nAbs presence and can serve as a substitute.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunoglobulina G/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/epidemiología , COVID-19/virología , Niño , Preescolar , Estudios de Cohortes , Epidemias/prevención & control , Humanos , Inmunoglobulina G/sangre , Persona de Mediana Edad , Reproducibilidad de los Resultados , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Sensibilidad y Especificidad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...