Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 42(19): 3924-3927, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957162

RESUMEN

We demonstrate a simple scheme that allows performing distributed Brillouin phase spectrum (BPS) measurements with very high spatial resolution (∼7 cm) over long (∼4.7 km) optical fibers. This is achieved by inserting a Sagnac interferometer (SI) in a Brillouin optical correlation domain analysis (BOCDA) configuration. Over its already-presented time-domain equivalent (SI-BOTDA), this approach reduces the main source of noise (coherent backscatter noise) thanks to the low-coherence nature of the used signals. On the other hand, over the most usual schemes used for distributed BPS measurements, this implementation presents the key advantage of not requiring high-bandwidth detection or complex modulation while reaching unprecedented values of spatial resolution and number of resolved points for this type of measurement. Thanks to the linear dependence of the BPS feature around the Brillouin frequency shift, this scheme could also have the advantage of requiring shorter scanning ranges than amplitude-based configurations.

2.
Opt Express ; 24(15): 17200-14, 2016 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-27464170

RESUMEN

We evaluate the Brillouin frequency shift (BFS) determination error when utilizing the Brillouin phase spectrum (BPS) instead of the Brillouin gain spectrum (BGS) in BOTDA systems. Systems based on the BPS perform the determination of the BFS through a linear fit around the zero de-phase frequency region. An analytical expression of the error obtained in the BFS determination as a function of the different experimental parameters is provided and experimentally validated. The experimental results show a good agreement with the theoretical predictions as a function of the number of sampling points, signal-to-noise ratio (SNR) and Brillouin spectral linewidth. For an equal SNR and linewidth, the phase response only provides a better BFS estimation than the gain response when the fit is performed over a restricted frequency range around the center of the spectral profile. This may reduce the measurement time of specific BOTDA systems requiring a narrow frequency scanning. When the frequency scan covers most of the Brillouin spectral profile, gain and phase responses give very similar estimations of the BFS and the BPS offers no crucial benefit.

3.
Opt Express ; 23(8): 10341-52, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25969075

RESUMEN

According to recent models, non-local effects in dual-probe-sideband Brillouin Optical Time Domain Analysis (BOTDA) systems should be essentially negligible whenever the probe power is below the Stimulated Brillouin Scattering (SBS) threshold. This paper shows that actually there appear non-local effects in this type of systems before the SBS threshold. To explain these effects it is necessary to take into account a full spectral description of the SBS process. The pump pulse experiences a frequency-dependent spectral deformation that affects the readout process differently in the gain and loss configurations. This paper provides a simple analytical model of this phenomenon, which is validated against compelling experimental data, showing good agreement. The main conclusion of our study is that the measurements in gain configuration are more robust to this non-local effect than the loss configuration. Experimental and theoretical results show that, for a total probe wave power of ~1 mW (500 µW on each sideband), there is an up-shifting of ~1 MHz in the Brillouin Frequency Shift (BFS) retrieved from the Brillouin Loss Spectrum, whereas the BFS extracted from the measured Brillouin Gain Spectrum is up-shifted only ~0.6 MHz. These results are of particular interest for manufacturers of long-range BOTDA systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA