Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Healthcare (Basel) ; 12(4)2024 Feb 09.
Article En | MEDLINE | ID: mdl-38391822

(1) Background: Vibrotactile stimulation has been studied for tremor, but there is little evidence for Essential Tremor (ET). (2) Methods: This research employed a dataset from a previous study, with data collected from 18 individuals subjected to four vibratory stimuli. To characterise tremor changes before, during, and after stimuli, time and frequency domain features were estimated from the signals. Correlation and regression analyses verified the relationship between features and clinical tremor scores. (3) Results: Individuals responded differently to vibrotactile stimulation. The 250 Hz stimulus was the only one that reduced tremor amplitude after stimulation. Compared to the baseline, the 250 Hz and random frequency stimulation reduced tremor peak power. The clinical scores and amplitude-based features were highly correlated, yielding accurate regression models (mean squared error of 0.09). (4) Conclusions: The stimulation frequency of 250 Hz has the greatest potential to reduce tremors in ET. The accurate regression model and high correlation between estimated features and clinical scales suggest that prediction models can automatically evaluate and control stimulus-induced tremor. A limitation of this research is the relatively reduced sample size.

2.
Sci Rep ; 13(1): 22908, 2023 12 21.
Article En | MEDLINE | ID: mdl-38129592

Hemiparetic gait is the most common motor-disorder after stroke and, in spite of rehabilitation efforts, it is persistent in 50% of community dwelling stroke-survivors. Robotic exoskeletons have been proposed as assistive devices to support impaired joints. An example of these devices is the REFLEX knee exoskeleton, which assists the gait of hemiparetic subjects and whose action seems to be properly embodied by stroke survivors, who were able to adapt the motion of their non-assisted limbs and, therefore, reduce their compensation mechanisms. This paper presents an experimental validation carried out to deepen into the effects of REFLEX's assistance in hemiparetic subjects. Special attention was paid to the effect produced in the muscular activity as a metric to evaluate the embodiment of this technology. Significant differences were obtained at the subject level due to the assistance; however, the high dispersion of the measured outcomes avoided extracting global effects at the group level. These results highlight the need of individually tailoring the action of the robot to the individual needs of each patient to maximize the beneficial outcomes. Extra research effort should be done to elucidate the neural mechanisms involved in the embodiment of external devices by stroke survivors.


Exoskeleton Device , Stroke Rehabilitation , Stroke , Humans , Stroke Rehabilitation/methods , Stroke/complications , Gait , Reflex
3.
J Neuroeng Rehabil ; 19(1): 109, 2022 10 08.
Article En | MEDLINE | ID: mdl-36209096

BACKGROUND: Hemiparetic gait is characterized by strong asymmetries that can severely affect the quality of life of stroke survivors. This type of asymmetry is due to motor deficits in the paretic leg and the resulting compensations in the nonparetic limb. In this study, we aimed to evaluate the effect of actively promoting gait symmetry in hemiparetic patients by assessing the behavior of both paretic and nonparetic lower limbs. This paper introduces the design and validation of the REFLEX prototype, a unilateral active knee-ankle-foot orthosis designed and developed to naturally assist the paretic limbs of hemiparetic patients during gait. METHODS: REFLEX uses an adaptive frequency oscillator to estimate the continuous gait phase of the nonparetic limb. Based on this estimation, the device synchronically assists the paretic leg following two different control strategies: (1) replicating the movement of the nonparetic leg or (2) inducing a healthy gait pattern for the paretic leg. Technical validation of the system was implemented on three healthy subjects, while the effect of the generated assistance was assessed in three stroke patients. The effects of this assistance were evaluated in terms of interlimb symmetry with respect to spatiotemporal gait parameters such as step length or time, as well as the similarity between the joint's motion in both legs. RESULTS: Preliminary results proved the feasibility of the REFLEX prototype to assist gait by reinforcing symmetry. They also pointed out that the assistance of the paretic leg resulted in a decrease in the compensatory strategies developed by the nonparetic limb to achieve a functional gait. Notably, better results were attained when the assistance was provided according to a standard healthy pattern, which initially might suppose a lower symmetry but enabled a healthier evolution of the motion of the nonparetic limb. CONCLUSIONS: This work presents the preliminary validation of the REFLEX prototype, a unilateral knee exoskeleton for gait assistance in hemiparetic patients. The experimental results indicate that assisting the paretic leg of a hemiparetic patient based on the movement of their nonparetic leg is a valuable strategy for reducing the compensatory mechanisms developed by the nonparetic limb.


Exoskeleton Device , Gait Disorders, Neurologic , Robotic Surgical Procedures , Stroke Rehabilitation , Stroke , Biomechanical Phenomena , Gait , Gait Disorders, Neurologic/etiology , Humans , Lower Extremity , Paresis/etiology , Quality of Life , Stroke/complications
4.
Sci Rep ; 9(1): 16476, 2019 11 11.
Article En | MEDLINE | ID: mdl-31712728

Essential tremor (ET) is a major cause of disability and is not effectively managed in half of the patients. We investigated whether mechanical vibration could reduce tremor in ET by selectively recruiting afferent pathways. We used piezoelectric actuators to deliver vibratory stimuli to the hand and forearm during long trials (4 min), while we monitored the tremor using inertial sensors. We analyzed the effect of four stimulation strategies, including different constant and variable vibration frequencies, in 18 ET patients. Although there was not a clear homogeneous response to vibration across patients and strategies, in most cases (50-72%) mechanical vibration was associated with an increase in the amplitude of their tremor. In contrast, the tremor was reduced in 5-22% of the patients, depending on the strategy. However, these results are hard to interpret given the intrinsic variability of the tremor: during equally long trials without vibration, the tremor changed significantly in 67% of the patients (increased in 45%; decreased in 22%). We conclude that mechanical vibration of the limb does not have a systematic effect on tremor in ET. Moreover, the observed intrinsic variability of the tremor should be taken into account when designing future experiments to assess tremor in ET and how it responds to any intervention.


Essential Tremor/physiopathology , Muscle Contraction , Muscles/physiopathology , Tremor/prevention & control , Vibration , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Spain/epidemiology , Tremor/epidemiology
...