Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Ecotoxicol Environ Saf ; 274: 116185, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38489906

This study explores the environmental effects of five common veterinary antibiotics widely detected in the environment, (chlortetracycline,CTC; oxytetracycline,OTC; florfenicol,FF; neomycin, NMC; and sulfadiazine, SDZ) on four bioindicators: Daphnia magna, Vibrio fischeri, Eisenia fetida, and Allium cepa, representing aquatic and soil environments. Additionally, microbial communities characterized through 16 S rRNA gene sequencing from a river and natural soil were exposed to the antibiotics to assess changes in population growth and metabolic profiles using Biolog EcoPlates™. Tetracyclines are harmful to Vibrio fisheri (LC50 ranges of 15-25 µg/mL), and the other three antibiotics seem to only affect D. magna, especially, SDZ. None of the antibiotics produced mortality in E. fetida at concentrations below 1000 mg/kg. NMC and CTC had the highest phytotoxicities in A. cepa (LC50 = 97-174 µg/mL, respectively). Antibiotics significantly reduced bacterial metabolism at 0.1-10 µg/mL. From the highest to the lowest toxicity on aquatic communities: OTC > FF > SDZ ≈ CTC > NMC and on edaphic communities: CTC ≈ OTC > FF > SDZ > NMC. In river communities, OTC and FF caused substantial decreases in bacterial metabolism at low concentrations (0.1 µg/mL), impacting carbohydrates, amino acids (OTC), and polymers (FF). At 10 µg/mL and above, OTC, CTC, and FF significantly decreased metabolizing all tested metabolites. In soil communities, a more pronounced decrease in metabolizing ability, detectable at 0.1 µg/mL, particularly affected amines/amides and carboxylic and ketonic acids (p < 0.05). These new ecotoxicity findings underscore that the concentrations of these antibiotics in the environment can significantly impact both aquatic and terrestrial ecosystems.


Anti-Bacterial Agents , Oxytetracycline , Anti-Bacterial Agents/toxicity , Soil , Ecosystem , Water , Oxytetracycline/toxicity
2.
Toxics ; 12(2)2024 Jan 29.
Article En | MEDLINE | ID: mdl-38393210

Despite widespread industrial use, the environmental safety of hydroquinone (HQ), a benzene compound from plants used in processes like cosmetics, remains uncertain. This study evaluated the ecotoxicological impact of HQ on soil and river environments, utilizing non-target indicator organisms from diverse trophic levels: Daphnia magna, Aliivibrio fischeri, Allium cepa, and Eisenia fetida. For a more environmentally realistic assessment, microbial communities from a river and untreated soil underwent 16S rRNA gene sequencing, with growth and changes in community-level physiological profiling assessed using Biolog EcoPlate™ assays. The water indicator D. magna exhibited the highest sensitivity to HQ (EC50 = 0.142 µg/mL), followed by A. fischeri (EC50 = 1.446 µg/mL), and A. cepa (LC50 = 7.631 µg/mL), while E. fetida showed the highest resistance (EC50 = 234 mg/Kg). Remarkably, microbial communities mitigated HQ impact in both aquatic and terrestrial environments. River microorganisms displayed minimal inhibition, except for a significant reduction in polymer metabolism at the highest concentration (100 µg/mL). Soil communities demonstrated resilience up to 100 µg/mL, beyond which there was a significant decrease in population growth and the capacity to metabolize carbohydrates and polymers. Despite microbial mitigation, HQ remains highly toxic to various trophic levels, emphasizing the necessity for environmental regulations.

3.
Plants (Basel) ; 13(2)2024 Jan 10.
Article En | MEDLINE | ID: mdl-38256746

One strategy to mitigate the emergence of bacterial resistance involves reducing antibiotic doses by combining them with natural products, such as trans-cinnamaldehyde (CIN). The objective of this research was to identify in vitro combinations (CIN + commercial antibiotic (ABX)) that decrease the minimum inhibitory concentration (MIC) of seven antibiotics against 14 different Gram-positive and Gram-negative pathogenic bacteria, most of them classified as ESKAPE. MIC values were measured for all compounds using the broth microdilution method. The effect of the combinations on these microorganisms was analyzed through the checkboard assay to determine the type of activity (synergy, antagonism, or addition). This analysis was complemented with a kinetic study of the synergistic combinations. Fifteen synergistic combinations were characterized for nine of the tested bacteria. CIN demonstrated effectiveness in reducing the MIC of chloramphenicol, streptomycin, amoxicillin, and erythromycin (94-98%) when tested on Serratia marcescens, Staphylococcus aureus, Pasteurella aerogenes, and Salmonella enterica, respectively. The kinetic study revealed that when the substances were tested alone at the MIC concentration observed in the synergistic combination, bacterial growth was not inhibited. However, when CIN and the ABX, for which synergy was observed, were tested simultaneously in combination at these same concentrations, the bacterial growth inhibition was complete. This demonstrates the highly potent in vitro synergistic activity of CIN when combined with commercial ABXs. This finding could be particularly beneficial in livestock farming, as this sector witnesses the highest quantities of antimicrobial usage, contributing significantly to antimicrobial resistance issues. Further research focused on this natural compound is thus warranted for this reason.

4.
Plants (Basel) ; 12(23)2023 Nov 30.
Article En | MEDLINE | ID: mdl-38068678

Tannic acid (TA) is a key tannin extensively used in the leather industry, contributing to around 90% of global leather production. This practice leads to the generation of highly polluting effluents, causing environmental harm to aquatic ecosystems. Additionally, tannins like TA degrade slowly under natural conditions. Despite efforts to reduce pollutant effluents, limited attention has been devoted to the direct environmental impact of tannins. Moreover, TA has garnered increased attention mainly due to its applications as an antibacterial agent and anti-carcinogenic compound. However, our understanding of its ecotoxicological effects remains incomplete. This study addresses this knowledge gap by assessing the ecotoxicity of TA on non-target indicator organisms in both water (Vibrio fischeri, Daphnia magna) and soil environments (Eisenia foetida, Allium cepa), as well as natural fluvial and edaphic communities, including periphyton. Our findings offer valuable insights into TA's ecotoxicological impact across various trophic levels, underscoring the need for more comprehensive investigations in complex ecosystems. Our results demonstrate that TA exhibits ecotoxicity towards specific non-target aquatic organisms, particularly V. fischeri and D. magna, and phytotoxicity on A. cepa. The severity of these effects varies, with V. fischeri being the most sensitive, followed by D. magna and A. cepa. However, the soil-dwelling invertebrate E. foetida shows resistance to the tested TA concentrations. Furthermore, our research reveals that substantial TA concentrations are required to reduce the growth of river microbial communities. Metabolic changes, particularly in amino acid and amine metabolism, are observed at lower concentrations. Notably, the photosynthetic yield of river periphyton remains unaffected, even at higher concentrations. In contrast, soil microbial communities exhibit greater sensitivity, with significant alterations in population growth and metabolic profiles at a very low concentration of 0.2 mg/L for all metabolites. In summary, this study offers valuable insights into the ecotoxicological effects of TA on both aquatic and terrestrial environments. It underscores the importance of considering a variety of non-target organisms and complex communities when assessing the environmental implications of this compound.

5.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article En | MEDLINE | ID: mdl-38069283

Global prevalence of antibiotic residues (ABX) in rivers requires ecotoxicological impact assessment. River microbial communities serve as effective bioindicators for this purpose. We quantified the effects of eight commonly used ABXs on a freshwater river microbial community using Biolog EcoPlates™, enabling the assessment of growth and physiological profile changes. Microbial community characterization involved 16S rRNA gene sequencing. The river community structure was representative of aquatic ecosystems, with the prevalence of Cyanobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes. Our findings reveal that all ABXs at 100 µg/mL reduced microbial community growth and metabolic capacity, particularly for polymers, carbohydrates, carboxylic, and ketonic acids. Chloramphenicol, erythromycin, and gentamicin exhibited the highest toxicity, with chloramphenicol notably impairing the metabolism of all studied metabolite groups. At lower concentrations (1 µg/mL), some ABXs slightly enhanced growth and the capacity to metabolize substrates, such as carbohydrates, carboxylic, and ketonic acids, and amines, except for amoxicillin, which decreased the metabolic capacity across all metabolites. We explored potential correlations between physicochemical parameters and drug mechanisms to understand drug bioavailability. Acute toxicity effects at the river-detected low concentrations (ng/L) are unlikely. However, they may disrupt microbial communities in aquatic ecosystems. The utilization of a wide array of genetically characterized microbial communities, as opposed to a single species, enables a better understanding of the impact of ABXs on complex river ecosystems.


Cyanobacteria , Microbiota , Rivers/chemistry , Anti-Bacterial Agents/toxicity , RNA, Ribosomal, 16S/genetics , Cyanobacteria/genetics , Chloramphenicol , Carbohydrates
...