Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
G3 (Bethesda) ; 11(2)2021 02 09.
Article En | MEDLINE | ID: mdl-33693600

Programmed cell death and cell corpse clearance are an essential part of organismal health and development. Cell corpses are often cleared away by professional phagocytes such as macrophages. However, in certain tissues, neighboring cells known as nonprofessional phagocytes can also carry out clearance functions. Here, we use the Drosophila melanogaster ovary to identify novel genes required for clearance by nonprofessional phagocytes. In the Drosophila ovary, germline cells can die at multiple time points. As death proceeds, the epithelial follicle cells act as phagocytes to facilitate the clearance of these cells. We performed an unbiased kinase screen to identify novel proteins and pathways involved in cell clearance during two death events. Of 224 genes examined, 18 demonstrated severe phenotypes during developmental death and clearance while 12 demonstrated severe phenotypes during starvation-induced cell death and clearance, representing a number of pathways not previously implicated in phagocytosis. Interestingly, it was found that several genes not only affected the clearance process in the phagocytes, but also non-autonomously affected the process by which germline cells died. This kinase screen has revealed new avenues for further exploration and investigation.


Drosophila Proteins , Drosophila melanogaster , Animals , Apoptosis , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Female , Germ Cells/metabolism , Ovarian Follicle/metabolism , Ovary/metabolism , RNA Interference
2.
FASEB J ; 33(11): 12500-12514, 2019 11.
Article En | MEDLINE | ID: mdl-31408613

The tetraspanin CD82 is a potent suppressor of tumor metastasis and regulates several processes including signal transduction, cell adhesion, motility, and aggregation. However, the mechanisms by which CD82 participates in innate immunity are unknown. We report that CD82 is a key regulator of TLR9 trafficking and signaling. TLR9 recognizes unmethylated cytosine-phosphate-guanine (CpG) motifs present in viral, bacterial, and fungal DNA. We demonstrate that TLR9 and CD82 associate in macrophages, which occurs in the endoplasmic reticulum (ER) and post-ER. Moreover, CD82 is essential for TLR9-dependent myddosome formation in response to CpG stimulation. Finally, CD82 modulates TLR9-dependent NF-κB nuclear translocation, which is critical for inflammatory cytokine production. To our knowledge, this is the first time a tetraspanin has been implicated as a key regulator of TLR signaling. Collectively, our study demonstrates that CD82 is a specific regulator of TLR9 signaling, which may be critical in cancer immunotherapy approaches and coordinating the innate immune response to pathogens.-Khan, N. S., Lukason, D. P., Feliu, M., Ward, R. A., Lord, A. K., Reedy, J. L., Ramirez-Ortiz, Z. G., Tam, J. M., Kasperkovitz, P. V., Negoro, P. E., Vyas, T. D., Xu, S., Brinkmann, M. M., Acharaya, M., Artavanis-Tsakonas, K., Frickel, E.-M., Becker, C. E., Dagher, Z., Kim, Y.-M., Latz, E., Ploegh, H. L., Mansour, M. K., Miranti, C. K., Levitz, S. M., Vyas, J. M. CD82 controls CpG-dependent TLR9 signaling.


Cell Nucleus/immunology , Kangai-1 Protein/immunology , Macrophages/immunology , Oligodeoxyribonucleotides/pharmacology , Signal Transduction/drug effects , Toll-Like Receptor 9/immunology , Active Transport, Cell Nucleus/drug effects , Active Transport, Cell Nucleus/genetics , Active Transport, Cell Nucleus/immunology , Animals , Cell Nucleus/genetics , Cytokines/genetics , Cytokines/immunology , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/pathology , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Kangai-1 Protein/genetics , Macrophages/pathology , Mice , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/immunology , RAW 264.7 Cells , Signal Transduction/genetics , Signal Transduction/immunology , Toll-Like Receptor 9/genetics
3.
Virulence ; 9(1): 1150-1162, 2018.
Article En | MEDLINE | ID: mdl-29962263

Candida spp. are the fourth leading cause of nosocomial blood stream infections in North America. Candida glabrata is the second most frequently isolated species, and rapid development of antifungal resistance has made treatment a challenge. In this study, we investigate the therapeutic potential of metformin, a biguanide with well-established action for diabetes, as an antifungal agent against C. glabrata. Both wild type and antifungal-resistant isolates of C. glabrata were subjected to biguanide and biguanide-antifungal combination treatment. Metformin, as well as other members of the biguanide family, were found to have antifungal activity against C. glabrata, with MIC50 of 9.34 ± 0.16 mg/mL, 2.09 ± 0.04 mg/mL and 1.87 ± 0.05 mg/mL for metformin, phenformin and buformin, respectively. We demonstrate that biguanides enhance the activity of several antifungal drugs, including voriconazole, fluconazole, and amphotericin, but not micafungin. The biguanide-antifungal combinations allowed for additional antifungal effects, with fraction inhibition concentration indexes ranging from 0.5 to 1. Furthermore, metformin was able to lower antifungal MIC50 in voriconazole and fluconazole-resistant clinical isolates of C. glabrata. We also observed growth reduction of C. glabrata with rapamycin and an FIC of 0.84 ± 0.09 when combined with metformin, suggesting biguanide action in C. glabrata may be related to inhibition of the mTOR complex. We conclude that the biguanide class has direct antifungal therapeutic potential and enhances the activity of select antifungals in the treatment of resistant C. glabrata isolates. These data support the further investigation of biguanides in the combination treatment of serious fungal infections.


Antifungal Agents/pharmacology , Biguanides/pharmacology , Candida glabrata/drug effects , Candida/drug effects , Amphotericin B/pharmacology , Candida glabrata/growth & development , Drug Combinations , Drug Resistance, Fungal , Echinocandins/pharmacology , Fluconazole/pharmacology , Humans , Lipopeptides/pharmacology , Metformin/pharmacology , Micafungin , Microbial Sensitivity Tests , Mycoses/drug therapy , Mycoses/microbiology , TOR Serine-Threonine Kinases/drug effects , Voriconazole/pharmacology
4.
Infect Immun ; 85(3)2017 03.
Article En | MEDLINE | ID: mdl-28031265

Dematiaceous molds are found ubiquitously in the environment and cause a wide spectrum of human disease, including infections associated with high rates of mortality. Despite this, the mechanism of the innate immune response has been less well studied, although it is key in the clearance of fungal pathogens. Here, we focus on Exserohilum rostratum, a dematiaceous mold that caused 753 infections during a multistate outbreak due to injection of contaminated methylprednisolone. We show that macrophages are incapable of phagocytosing Exserohilum Despite a lack of phagocytosis, macrophage production of tumor necrosis factor alpha is triggered by hyphae but not spores and depends upon Dectin-1, a C-type lectin receptor. Dectin-1 is specifically recruited to the macrophage-hyphal interface but not the macrophage-spore interface due to differences in carbohydrate antigen expression between these two fungal forms. Corticosteroid and antifungal therapy perturb this response, resulting in decreased cytokine production. In vivo soft tissue infection in wild-type mice demonstrated that Exserohilum provokes robust neutrophilic and granulomatous inflammation capable of thwarting fungal growth. However, coadministration of methylprednisolone acetate results in robust hyphal tissue invasion and a significant reduction in immune cell recruitment. Our results suggest that Dectin-1 is crucial for macrophage recognition and the macrophage response to Exserohilum and that corticosteroids potently attenuate the immune response to this pathogen.


Ascomycota/immunology , Host-Pathogen Interactions/immunology , Lectins, C-Type/metabolism , Mycoses/immunology , Mycoses/metabolism , Adrenal Cortex Hormones/pharmacology , Antifungal Agents/pharmacology , Ascomycota/drug effects , Carbohydrates/immunology , Cell Wall/immunology , Cytokines/biosynthesis , Humans , Hyphae , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mycoses/microbiology , Phagocytosis , Spores, Fungal , Tumor Necrosis Factor-alpha/metabolism
...