RESUMEN
The transmission of dengue (DENV) and Zika (ZIKV) has been continuously increasing worldwide. An efficient arbovirus surveillance system is critical to designing early-warning systems to increase preparedness of future outbreaks in endemic countries. The Near Infrared Spectroscopy (NIRS) is a promising high throughput technique to detect arbovirus infection in Ae. aegypti with remarkable advantages such as cost and time effectiveness, reagent-free, and non-invasive nature over existing molecular tools for similar purposes, enabling timely decision making through rapid detection of potential disease. Our aim was to determine whether NIRS can differentiate Ae. aegypti females infected with either ZIKV or DENV single infection, and those coinfected with ZIKV/DENV from uninfected ones. Using 200 Ae. aegypti females reared and infected in laboratory conditions, the training model differentiated mosquitoes into the four treatments with 100% accuracy. DENV-, ZIKV-, and ZIKV/DENV-coinfected mosquitoes that were used to validate the model could be correctly classified into their actual infection group with a predictive accuracy of 100%, 84%, and 80%, respectively. When compared with mosquitoes from the uninfected group, the three infected groups were predicted as belonging to the infected group with 100%, 97%, and 100% accuracy for DENV-infected, ZIKV-infected, and the co-infected group, respectively. Preliminary lab-based results are encouraging and indicate that NIRS should be tested in field settings to evaluate its potential role to monitor natural infection in field-caught mosquitoes.
Asunto(s)
Aedes , Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Infección por el Virus Zika/epidemiología , Espectroscopía Infrarroja CortaRESUMEN
To eliminate malaria, scalable tools that are rapid, affordable, and can detect patients with low parasitemia are required. Non-invasive diagnostic tools that are rapid, reagent-free, and affordable would also provide a justifiable platform for testing malaria in asymptomatic patients. However, non-invasive surveillance techniques for malaria remain a diagnostic gap. Here, we show near-infrared Plasmodium absorption peaks acquired non-invasively through the skin using a miniaturized hand-held near-infrared spectrometer. Using spectra from the ear, these absorption peaks and machine learning techniques enabled non-invasive detection of malaria-infected human subjects with varying parasitemia levels in less than 10 s.