Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Leukoc Biol ; 113(5): 518-524, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36860165

RESUMEN

Epigenetic therapy is an emerging field in the treatment of human cancer, including hematologic malignancies. This class of therapeutic agents approved by the US Food and Drug Administration for cancer treatment includes DNA hypomethylating agents, histone deacetylase inhibitors, IDH1/2 inhibitors, EZH2 inhibitors, and numerous preclinical targets/agents. Most studies measuring the biological effects of epigenetic therapy focus their attention on either their direct cytotoxic effects on malignant cells or their effects on modifying tumor cell antigen expression, exposing them to immune surveillance mechanisms. However, a growing body of evidence suggests that epigenetic therapy also has effects on the development and function of the immune system, including natural killer cells, which can alter their response to cancer cells. In this review, we summarize the body of literature studying the effects of different classes of epigenetic therapy on the development and/or function of natural killer cells.


Asunto(s)
Antineoplásicos , Neoplasias Hematológicas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/metabolismo , Células Asesinas Naturales , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Epigénesis Genética
2.
Cell Rep ; 42(1): 111937, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640314

RESUMEN

Group 1 innate lymphoid cells (ILCs) comprise a heterogeneous family of cytotoxic natural killer (NK) cells and ILC1s. We identify a population of "liver-type" ILC1s with transcriptional, phenotypic, and functional features distinct from those of conventional and liver-resident NK cells as well as from other previously described human ILC1 subsets. LT-ILC1s are CD49a+CD94+CD200R1+, express the transcription factor T-BET, and do not express the activating receptor NKp80 or the transcription factor EOMES. Similar to NK cells, liver-type ILC1s produce IFN-γ, TNF-α, and GM-CSF; however, liver-type ILC1s also produce IL-2 and lack perforin and granzyme-B. Liver-type ILC1s are expanded in cirrhotic liver tissues, and they can be produced from blood-derived ILC precursors in vitro in the presence of TGF-ß1 and liver sinusoidal endothelial cells. Cells with similar signature and function can also be found in tonsil and intestinal tissues. Collectively, our study identifies and classifies a population of human cross-tissue ILC1s.


Asunto(s)
Inmunidad Innata , Linfocitos , Humanos , Células Endoteliales , Células Asesinas Naturales , Hígado , Factores de Transcripción , Análisis de Secuencia de ARN
3.
J Immunol ; 208(9): 2109-2121, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35418470

RESUMEN

CD1d, a lipid Ag-presenting molecule for invariant NKT (iNKT) cells, is abundantly expressed on adipocytes and regulates adipose homeostasis through iNKT cells. CD1d gene expression was restored in visceral adipose tissue adipocytes of CD1d knockout (KO) mice to investigate the interactions between adipocytes and immune cells within adipose tissue. We developed an adipocyte-specific targeting recombinant adeno-associated viral vector, with minimal off-target transgene expression in the liver, to rescue CD1d gene expression in visceral adipose tissue adipocytes of CD1d KO mice, followed by assessment of immune cell alternations in adipose tissue and elucidation of the underlying mechanisms of alteration. We report that adeno-associated virus-mediated gene transfer of CD1d to adipocytes in CD1d KO mice fails to rescue iNKT cells but leads to massive and selective expansion of T cells within adipose tissue, particularly CD8+ T effector cells, that is associated with adipocyte NLRP3 inflammasome activation, dysregulation of adipocyte functional genes, and upregulation of apoptotic pathway proteins. An NLRP3 inhibitor has no effect on T cell phenotypes whereas depletion of CD8+ T cells significantly attenuates inflammasome activation and abolishes the dysregulation of adipocyte functional genes induced by adipocyte CD1d. In contrast, adipocyte overexpression of CD1d fails to induce T cell activation in wild-type mice or in invariant TCR α-chain Jα18 KO mice that have a normal lymphocyte repertoire except for iNKT cells. Our studies uncover an adipocyte CD1d → CD8+ T cell → adipocyte inflammasome cascade, in which CD8+ T cells function as a key mediator of adipocyte inflammation likely induced by an allogeneic response against the CD1d molecule.


Asunto(s)
Linfocitos T CD8-positivos , Inflamasomas , Adipocitos , Animales , Antígenos CD1d , Linfocitos T CD8-positivos/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
4.
Blood Cancer Discov ; 3(2): 154-169, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35247900

RESUMEN

Extranodal natural killer/T-cell lymphoma (ENKTL) is an aggressive, rare lymphoma of natural killer (NK) cell origin with poor clinical outcomes. Here we used phenotypic and molecular profiling, including epigenetic analyses, to investigate how ENKTL ontogeny relates to normal NK-cell development. We demonstrate that neoplastic NK cells are stably, but reversibly, arrested at earlier stages of NK-cell maturation. Genes downregulated in the most epigenetic immature tumors were associated with polycomb silencing along with genomic gain and overexpression of EZH2. ENKTL cells exhibited genome-wide DNA hypermethylation. Tumor-specific DNA methylation gains were associated with polycomb-marked regions, involving extensive gene silencing and loss of transcription factor binding. To investigate therapeutic targeting, we treated novel patient-derived xenograft (PDX) models of ENKTL with the DNA hypomethylating agent, 5-azacytidine. Treatment led to reexpression of NK-cell developmental genes, phenotypic NK-cell differentiation, and prolongation of survival. These studies lay the foundation for epigenetic-directed therapy in ENKTL. SIGNIFICANCE: Through epigenetic and transcriptomic analyses of ENKTL, a rare, aggressive malignancy, along with normal NK-cell developmental intermediates, we identified that extreme DNA hypermethylation targets genes required for NK-cell development. Disrupting this epigenetic blockade in novel PDX models led to ENKTL differentiation and improved survival. This article is highlighted in the In This Issue feature, p. 85.


Asunto(s)
Linfoma Extranodal de Células NK-T , Células T Asesinas Naturales , Epigenómica , Perfilación de la Expresión Génica , Humanos , Células Asesinas Naturales/patología , Linfoma Extranodal de Células NK-T/tratamiento farmacológico , Células T Asesinas Naturales/patología
5.
J Immunol ; 207(6): 1672-1682, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34417259

RESUMEN

NK cells are known to be developmentally blocked and functionally inhibited in patients with acute myeloid leukemia (AML), resulting in poor clinical outcomes. In this study, we demonstrate that whereas NK cells are inhibited, closely related type 1 innate lymphoid cells (ILC1s) are enriched in the bone marrow of leukemic mice and in patients with AML. Because NK cells and ILC1s share a common precursor (ILCP), we asked if AML acts on the ILCP to alter developmental potential. A combination of ex vivo and in vivo studies revealed that AML skewing of the ILCP toward ILC1s and away from NK cells represented a major mechanism of ILC1 generation. This process was driven by AML-mediated activation of the aryl hydrocarbon receptor (AHR), a key transcription factor in ILCs, as inhibition of AHR led to decreased numbers of ILC1s and increased NK cells in the presence of AML. These results demonstrate a mechanism of ILC developmental skewing in AML and support further preclinical study of AHR inhibition in restoring normal NK cell development and function in the setting of AML.


Asunto(s)
Diferenciación Celular/inmunología , Inmunidad Innata , Células Asesinas Naturales/inmunología , Leucemia Mieloide Aguda/inmunología , Animales , Compuestos Azo/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/agonistas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Médula Ósea/inmunología , Carbazoles/farmacología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Leucemia Mieloide Aguda/sangre , Recuento de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Pirazoles/farmacología , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal/efectos de los fármacos
6.
Cancers (Basel) ; 13(2)2021 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-33477248

RESUMEN

Over the past 50 years, few therapeutic advances have been made in treating acute myeloid leukemia (AML), an aggressive form of blood cancer, despite vast improvements in our ability to classify the disease. Emerging evidence suggests the immune system is important in controlling AML progression and in determining prognosis. Natural killer (NK) cells are important cytotoxic effector cells of the innate lymphoid cell (ILC) family that have been shown to have potent anti-leukemic functions. Recent studies are now revealing impairment or dysregulation of other ILCs in various types of cancers, including AML, which limits the effectiveness of NK cells in controlling cancer progression. NK cell development and function are inhibited in AML patients, which results in worse clinical outcomes; however, the specific roles of other ILC populations in AML are just now beginning to be unraveled. In this review, we summarize what is known about the role of ILC populations in AML.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...