Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Appl Opt ; 60(22): F27-F32, 2021 Aug 01.
Article En | MEDLINE | ID: mdl-34612859

A single-frequency polarization-maintaining holmium-doped fiber master oscillator power amplifier operating at signal wavelengths of $2054\;{\rm nm}$ and $2090\;{\rm nm}$ is presented. The two-stage setup delivers up to $240\;{\rm W}$ peak power and $6.7\;\unicode{x00B5} {\rm J}$ pulse energy for a pulse width of $30.2\;{\rm ns}$ at a repetition rate of $100\;{\rm kHz}$. The first amplifier stage is designed by simulation, tailored for high gain at the signal wavelength range, favoring amplification at $2090\;{\rm nm}$. The design is discussed, and the measured values are compared with the simulation. The second stage is investigated regarding the efficiency for co- and counter-pumping. Stimulated Brillouin scattering was found to be the limiting factor for pulse peak power scaling in the second stage. The measured output pulse shapes are discussed and compared to pulse shapes derived with the Frantz-Nodvik model.

2.
J Anal Methods Chem ; 2021: 6638036, 2021.
Article En | MEDLINE | ID: mdl-34395017

BACKGROUND: Volatile acetone is a potential biomarker that is elevated in various disease states. Measuring acetone in exhaled breath is complicated by the fact that the molecule might be present as both monomers and dimers, but in inconsistent ratios. Ignoring the molecular form leads to incorrect measured concentrations. Our first goal was to evaluate the monomer-dimer ratio in ambient air, critically ill patients, and rats. Our second goal was to confirm the accuracy of the combined (monomer and dimer) analysis by comparison to a reference calibration system. METHODS: Volatile acetone intensities from exhaled air of ten intubated, critically ill patients, and ten ventilated Sprague-Dawley rats were recorded using ion-mobility spectrometry. Acetone concentrations in ambient air in an intensive care unit and in a laboratory were determined over 24 hours. The calibration reference was pure acetone vaporized by a gas generator at concentrations from 5 to 45 ppbv (parts per billion by volume). RESULTS: Acetone concentrations in ambient laboratory air were only slightly greater (5.6 ppbv; 95% CI 5.1-6.2) than in ambient air in an intensive care unit (5.1 ppbv; 95% CI 4.4-5.5; p < 0.001). Exhaled acetone concentrations were only slightly greater in rats (10.3 ppbv; 95% CI 9.7-10.9) than in critically ill patients (9.5 ppbv; 95% CI 7.9-11.1; p < 0.001). Vaporization yielded acetone monomers (1.3-5.3 mV) and dimers (1.4-621 mV). Acetone concentrations (ppbv) and corresponding acetone monomer and dimer intensities (mV) revealed a high coefficient of determination (R 2 = 0.96). The calibration curve for acetone concentration (ppbv) and total acetone (monomers added to twice the dimers; mV) was described by the exponential growth 3-parameter model, with an R 2 = 0.98. CONCLUSION: The ratio of acetone monomer and dimer is inconsistent and varies in ambient air from place-to-place and across individual humans and rats. Monomers and dimers must therefore be considered when quantifying acetone. Combining the two accurately assesses total volatile acetone.

3.
J Breath Res ; 15(1): 016003, 2020 10 24.
Article En | MEDLINE | ID: mdl-33103661

Inflammation may alter volatile organic compounds (VOCs) in exhaled breath. We therefore used ion mobility spectrometry (IMS) to evaluate exhaled breath components in two non-infectious inflammatory models. Fifty male Sprague Dawley rats were anesthetized and ventilated for 24 h. Five treatments were randomly assigned: (1) lipopolysaccharide low dose [5 mg/kg]; (2) lipopolysaccharide high dose [10 mg/kg]; (3) alpha toxin low dose [40 µg/kg]; (4) alpha toxin high dose [80 µg/kg]; and, (5) NaCl 0.9% as control group. Gas was sampled from the expiratory line of the ventilator every 20 min and analyzed with IMS combined with a multi-capillary column. VOCs were identified by comparison with an established database. Survival analysis was performed by log-rank test, other analyses by one-way or paired ANOVA-tests and post-hoc analysis according to Holm-Sidak. Rats given NaCl and low-dose alpha toxin survived 24 h. The median survival time in alpha toxin high-dose group was 23 (95%-confidence interval (CI): 21, 24) h. In contrast, the median survival time in rats given high-dose lipopolysaccharide was 12 (95% CI: 9, 14) and only 13 (95% CI: 10, 16) h in those given high-dose lipopolysaccharide. 73 different VOCs were detected, of which 35 were observed only in the rats, 38 could be found both in the blank measurements of ventilator air and in the exhaled air of the rats. Forty-nine of the VOCs were identifiable from a registry of compounds. Exhaled volatile compounds were comparable in each group before injection of lipopolysaccharide and alpha toxin. In the LPS groups, 1-pentanol increased and 2-propanol decreased. After alpha toxin treatment, 1-butanol and 1-pentanol increased whereas butanal and isopropylamine decreased. Induction of a non-infectious systemic inflammation (niSI) by lipopolysaccharide and alpha toxin changes VOCs in exhaled breath. Exhalome analysis may help identify niSI.


Bacterial Toxins/administration & dosage , Hemolysin Proteins/administration & dosage , Inflammation/pathology , Pulmonary Ventilation , Volatile Organic Compounds/analysis , Animals , Blood Chemical Analysis , Breath Tests , Cytokines/blood , Exhalation , Hemodynamics , Kaplan-Meier Estimate , Lipopolysaccharides/administration & dosage , Male , Rats, Sprague-Dawley , Survival Analysis
4.
J Breath Res ; 11(3): 036005, 2017 Aug 21.
Article En | MEDLINE | ID: mdl-28825414

Propofol in exhaled breath can be measured and may provide a real-time estimate of plasma concentration. However, propofol is absorbed in plastic tubing, thus estimates may fail to reflect lung/blood concentration if expired gas is not extracted directly from the endotracheal tube. We evaluated exhaled propofol in five ventilated ICU patients who were sedated with propofol. Exhaled propofol was measured once per minute using ion mobility spectrometry. Exhaled air was sampled directly from the endotracheal tube and at the ventilator end of the expiratory side of the anesthetic circuit. The circuit was disconnected from the patient and propofol was washed out with a separate clean ventilator. Propofol molecules, which discharged from the expiratory portion of the breathing circuit, were measured for up to 60 h. We also determined whether propofol passes through the plastic of breathing circuits. A total of 984 data pairs (presented as median values, with 95% confidence interval), consisting of both concentrations were collected. The concentration of propofol sampled near the patient was always substantially higher, at 10.4 [10.25-10.55] versus 5.73 [5.66-5.88] ppb (p < 0.001). The reduction in concentration over the breathing circuit tubing was 4.58 [4.48-4.68] ppb, 3.46 [3.21-3.73] in the first hour, 4.05 [3.77-4.34] in the second hour, and 4.01 [3.36-4.40] in the third hour. Out-gassing propofol from the breathing circuit remained at 2.8 ppb after 60 h of washing out. Diffusion through the plastic was not observed. Volatile propofol binds or adsorbs to the plastic of a breathing circuit with saturation kinetics. The bond is reversible so propofol can be washed out from the plastic. Our data confirm earlier findings that accurate measurements of volatile propofol require exhaled air to be sampled as close as possible to the patient.


Intubation, Intratracheal/instrumentation , Propofol/analysis , Respiration, Artificial/instrumentation , Aged , Anesthesia , Exhalation , Female , Humans , Male , Middle Aged , Volatilization
5.
BMC Pulm Med ; 17(1): 116, 2017 Aug 22.
Article En | MEDLINE | ID: mdl-28830533

BACKGROUND: Expired gas (exhalome) analysis of ventilated critical ill patients can be used for drug monitoring and biomarker diagnostics. However, it remains unclear to what extent volatile organic compounds are present in gases from intensive care ventilators, gas cylinders, central hospital gas supplies, and ambient air. We therefore systematically evaluated background volatiles in inspired gas and their influence on the exhalome. METHODS: We used multi-capillary column ion-mobility spectrometry (MCC-IMS) breath analysis in five mechanically ventilated critical care patients, each over a period of 12 h. We also evaluated volatile organic compounds in inspired gas provided by intensive care ventilators, in compressed air and oxygen from the central gas supply and cylinders, and in the ambient air of an intensive care unit. Volatiles detectable in both inspired and exhaled gas with patient-to-inspired gas ratios < 5 were defined as contaminating compounds. RESULTS: A total of 76 unique MCC-IMS signals were detected, with 39 being identified volatile compounds: 73 signals were from the exhalome, 12 were identified in inspired gas from critical care ventilators, and 34 were from ambient air. Five volatile compounds were identified from the central gas supply, four from compressed air, and 17 from compressed oxygen. We observed seven contaminating volatiles with patient-to-inspired gas ratios < 5, thus representing exogenous signals of sufficient magnitude that might potentially be mistaken for exhaled biomarkers. CONCLUSIONS: Volatile organic compounds can be present in gas from central hospital supplies, compressed gas tanks, and ventilators. Accurate assessment of the exhalome in critical care patients thus requires frequent profiling of inspired gases and appropriate normalisation of the expired signals.


Breath Tests , Exhalation , Respiration, Artificial , Volatile Organic Compounds/analysis , Aged , Biomarkers , Humans , Intensive Care Units , Middle Aged , Respiratory Tract Diseases/diagnosis , Volatile Organic Compounds/chemistry
6.
J Breath Res ; 10(4): 047101, 2016 09 28.
Article En | MEDLINE | ID: mdl-27677863

Breath analysis of rats using multi-capillary column ion-mobility spectrometry (MCC-IMS) revealed alterations in acetone and other ketones, including 3-pentanone, during inflammation. The alterations seem likely to result from oxidative branched-chain keto acid (BCKA) catabolism. We therefore tested the hypothesis that 3-pentanone arises during inflammation from increased BCKA oxidation in the liver with consequent accumulation of propionyl-CoA and its condensation products. Male Sprague-Dawley rats were anaesthetised and ventilated for 24 h or until death. Exhaled breath was analysed by MCC-IMS while rats were injected with low and high doses of lipopolysaccharide (LPS), tumour necrosis factor α (TNFα), or vehicle. The exhaled 3-pentanone peak was identified by pure substance measurements. Blood was collected 12 h after treatment for the determination of cytokine concentrations; transcription enzymes for BCKA catabolism and the activity of the BCKA dehydrogenase were analysed in liver tissue by quantitative real-time PCR and western blotting. Exhaled 3-pentanone decreased in all groups, but minimum concentrations with high-dose LPS (0.24 ± 0.31 volts; mean ± SD), low-dose TNFα (0.17 ± 0.10 volts) and high-dose TNFα (0.13 ± 0.04 volts) were lower than in vehicle animals (0.27 ± 0.12 volts). At 60% and 85% survival times (svt) concentrations of exhaled 3-pentanone increased significantly in all animals treated with low-dose LPS, (svt60% 0.38 ± 0.18 volts, svt85% 0.62 ± 0.15 volts) and high-dose LPS (0.26 ± 0.28 volts, 0.40 ± 0.22 volts), as well as low-dose TNFα, (0.20 ± 0.09 volts, 0.39 ± 0.17 volts) and high-dose TNFα (0.18 ± 0.06 volts, 0.34 ± 0.08 volts), but not in vehicle rats (0.27 ± 0.12 volts, 0.30 ± 0.09 volts). BCKA catabolism was seen in the liver, with increased expression and activity of the branched-chain alpha-keto acid dehydrogenase (BCKD), lower expression of the propionyl-CoA carboxylase (PCC) subunits, and altered expression levels of BCKD regulating enzymes. Exhaled 3-pentanone may arise from altered BCKA catabolism. Our results suggest that excessive propionyl-CoA is possibly generated from BCKAs via increased activity of BCKD, but may undergo unusual condensation reactions rather than being physiologically processed to methylmalonyl-CoA by PCC. The pattern of 3-pentanone during early and prolonged inflammation suggests that reuse of BCKAs for the synthesis of new proteins might be initially favoured. As inflammatory conditions persist, substrates for cellular energy supply are required which activate irreversible degradation of excessive BCKA to propionyl-CoA yielding increased levels of exhaled 3-pentanone.


Inflammation/metabolism , Pentanones/metabolism , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Amino Acids, Branched-Chain/metabolism , Animals , Calibration , Exhalation/drug effects , Gene Expression Regulation/drug effects , Interleukin-10/blood , Interleukin-6/blood , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/pharmacology , Liver/drug effects , Liver/metabolism , Male , Phosphorylation/drug effects , Rats, Sprague-Dawley , Reproducibility of Results , Time Factors , Tumor Necrosis Factor-alpha/administration & dosage , Tumor Necrosis Factor-alpha/pharmacology , Volatile Organic Compounds/analysis
7.
J Breath Res ; 10(1): 016016, 2016 Mar 14.
Article En | MEDLINE | ID: mdl-26971584

Ischemia and reperfusion alter metabolism. Multi-capillary column ion-mobility spectrometry (MCC-IMS) can identify volatile organic compounds (VOCs) in exhaled gas. We therefore used MCC-IMS to evaluate exhaled gas in a rat model of hemorrhagic shock with reperfusion. Adult male Sprague-Dawley rats (n = 10 in control group, n = 15 in intervention group) were anaesthetized and ventilated via tracheostomy for 14 h or until death. Hemorrhagic shock was maintained for 90 min by removing blood from the femoral artery to a target of MAP 35 ± 5 mmHg, and then retransfusing the blood over 60 min in 15 rats; 10 control rats were evaluated without shock and reperfusion. Exhaled gas was analyzed with MCC-IMS, VOCs were identified using the BS-MCC/IMS analytes database (Version 1209). VOC intensities were analyzed at the end of shock, end of reperfusion, and after 9 h. All normotensive animals survived the observation period, whereas mean survival time was 11.2 h in shock and reperfusion animals. 16 VOCs differed significantly for at least one of the three analysis periods. Peak intensities of butanone, 2-ethyl-1-hexanol, nonanal, and an unknown compound were higher in shocked than normotensive rats, and another unknown compound increased over the time. 1-butanol increased only during reperfusion. Acetone, butanal, 1.2-butandiol, isoprene, 3-methylbutanal, 3-pentanone, 2-propanol, and two unknown compounds were lower and decreased during shock and reperfusion. 1-pentanol and 1-propanol were significant greater in the hypotensive animals during shock, were comparable during reperfusion, and then decreased after resuscitation. VOCs differ during hemorrhagic shock, reperfusion, and after reperfusion. MCC-IMS of exhaled breath deserves additional study as a non-invasive approach for monitoring changes in metabolism during ischemia and reperfusion.


Breath Tests/methods , Reperfusion , Shock, Hemorrhagic/metabolism , Volatile Organic Compounds/analysis , Animals , Exhalation , Male , Rats , Rats, Sprague-Dawley , Spectrum Analysis/methods
8.
Cardiovasc Toxicol ; 13(3): 290-300, 2013 Sep.
Article En | MEDLINE | ID: mdl-23584878

The mechanisms of the harmful cardiovascular effects of small particulate matter are incompletely understood. Endothelial progenitor cells (EPCs) predict outcome of patients with vascular disease. The aim of our study was to examine the effects of diesel exhaust particles (DEP) on EPC and on the associated vascular damage in mice. C57Bl/6 mice were exposed to DEP. 2 µg DEP/day was applicated intranasally for 3 weeks. Exposure to DEP reduced DiLDL/lectin positive EPC to 58.4 ± 5.6% (p < 0.005). Migratory capacity was reduced to 65.8 ± 3.9% (p < 0.0001). In ApoE(-/-) mice, DEP application reduced the number of EPC to 75.6 ± 6.4% (p < 0.005) and EPC migration to 58.5 ± 6.8% (p < 0.005). Neoangiogenesis was reduced to 39.5 ± 14.6% (p < 0.005). Atherogenesis was profoundly increased by DEP treatment (157.7 ± 18.1% vs. controls, p < 0.05). In cultured human EPC, DEP (0.1-100 µg/mL) reduced migratory capacity to 25 ± 2.6% (p < 0.001). The number of colony-forming units was reduced to 8.8 ± 0.9% (p < 0.001) and production of reactive oxygen species was elevated by DEP treatment (p < 0.001). Furthermore, DEP treatment increased apoptosis of EPC (to 266 ± 62% of control, p < 0.05). In a blood-brain barrier model, DEP treatment impaired endothelial cell integrity during oxygen-glucose deprivation (p < 0.001). Diesel exhaust particles impair endothelial progenitor cell number and function in vivo and in vitro. The reduction in EPC was associated with impaired neoangiogenesis and a marked increase in atherosclerotic lesion formation.


Air Pollutants/toxicity , Atherosclerosis/chemically induced , Endothelial Cells/drug effects , Endothelium, Vascular/drug effects , Neovascularization, Physiologic/drug effects , Particulate Matter/toxicity , Stem Cells/drug effects , Vehicle Emissions/toxicity , Animals , Apolipoproteins E/genetics , Apoptosis/drug effects , Atherosclerosis/pathology , Blood-Brain Barrier/drug effects , Cell Movement/drug effects , Cell Separation , Electron Spin Resonance Spectroscopy , Glucose/deficiency , Hypoxia/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Spleen/cytology , Superoxides/metabolism
9.
Basic Res Cardiol ; 105(6): 725-35, 2010 Nov.
Article En | MEDLINE | ID: mdl-20857126

Sca-1 and VEGFR-2 positive pro-angiogenic cells (PAC) predict outcome of patients with vascular disease. Activation of the renin-angiotensin-aldosterone system impairs PAC function. The effects of the direct renin inhibitor aliskiren on PAC numbers and function are not known. Treatment of C57Bl/6 mice and Apo E(-/-) mice on high-cholesterol diet with aliskiren, 25 mg/kg/day s.c. for 3-6 weeks, reduced systolic and diastolic blood pressure by -11.5 and -13.7% compared to vehicle. Aliskiren increased Sca-1/VEGFR-2 positive PAC in the blood (159 ± 14%) and spleen-derived DiLDL/lectin positive PAC (180 ± 21%). Migratory capacity of PAC was increased to 165 ± 16%. In cultured human PAC, aliskiren dose-dependently increased the number of colony forming units to 152 ± 9% (1 µmol/l) and 187 ± 7% (10 µmol/l), which was prevented by the eNOS inhibitor LNMA. H2O2-induced apoptosis of cultured human PAC was reduced to 77 ± 23%. In Apo E(-/-) mice, aliskiren reduced atherosclerotic plaque area in the aortic sinus by 58 ± 4%. Circulating Sca-1/VEGFR-2 positive PAC were upregulated to 180 ± 25% and migratory capacity of PAC was increased to 127 ± 7%. Aliskiren reduced vascular NADPH oxidase activity to 41.6 ± 6.7%. Despite similar blood pressure lowering, treatment with hydralazine (25 mg/kg/day) did not significantly influence atherogenesis or PAC. Treatment of C57Bl/6 mice with a lower dose of aliskiren (15 mg/kg/day) did not affect blood pressure but increased cultured DiLDL/lectin positive PAC to 229 ± 30% and their migratory capacity to 214 ± 24%. Aliskiren increased number and function of PAC in mice and prevented atherosclerotic lesion formation. The effects were observed independent of blood pressure lowering.


Amides/pharmacology , Angiogenesis Inducing Agents/pharmacology , Atherosclerosis/prevention & control , Endothelial Cells/drug effects , Fumarates/pharmacology , Neovascularization, Physiologic/drug effects , Renin/antagonists & inhibitors , Stem Cells/drug effects , Amides/administration & dosage , Angiogenesis Inducing Agents/administration & dosage , Animals , Antigens, Ly/metabolism , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Apoptosis/drug effects , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/physiopathology , Blood Pressure/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Endothelial Cells/metabolism , Fumarates/administration & dosage , Humans , Infusions, Subcutaneous , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , Renin/metabolism , Stem Cells/metabolism , Time Factors , Vascular Endothelial Growth Factor Receptor-2/metabolism
...