Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 280
1.
J Chem Phys ; 160(21)2024 Jun 07.
Article En | MEDLINE | ID: mdl-38836455

The use of cavities to impact molecular structure and dynamics has become popular. As cavities, in particular plasmonic nanocavities, are lossy and the lifetime of their modes can be very short, their lossy nature must be incorporated into the calculations. The Lindblad master equation is commonly considered an appropriate tool to describe this lossy nature. This approach requires the dynamics of the density operator and is thus substantially more costly than approaches employing the Schrödinger equation for the quantum wave function when several or many nuclear degrees of freedom are involved. In this work, we compare numerically the Lindblad and Schrödinger descriptions discussed in the literature for a molecular example where the cavity is pumped by a laser. The laser and cavity properties are varied over a range of parameters. It is found that the Schrödinger description adequately describes the dynamics of the polaritons and emission signal as long as the laser intensity is moderate and the pump time is not much longer than the lifetime of the cavity mode. Otherwise, it is demonstrated that the Schrödinger description gradually fails. We also show that the failure of the Schrödinger description can often be remedied by renormalizing the wave function at every step of time propagation. The results are discussed and analyzed.

2.
Nat Commun ; 15(1): 4594, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816362

X-ray-induced damage is one of the key topics in radiation chemistry. Substantial damage is attributed to low-energy electrons and radicals emerging from direct inner-shell photoionization or produced by subsequent processes. We apply multi-electron coincidence spectroscopy to X-ray-irradiated aqueous solutions of inorganic ions to investigate the production of low-energy electrons (LEEs) in a predicted cascade of intermolecular charge- and energy-transfer processes, namely electron-transfer-mediated decay (ETMD) and interatomic/intermolecular Coulombic decay (ICD). An advanced coincidence technique allows us to identify several LEE-producing steps during the decay of 1s vacancies in solvated Mg2+ ions, which escaped observation in previous non-coincident experiments. We provide strong evidence for the predicted recovering of the ion's initial state. In natural environments the recovering of the ion's initial state is expected to cause inorganic ions to be radiation-damage hot spots, repeatedly producing destructive particles under continuous irradiation.

4.
J Phys Chem Lett ; 15(17): 4655-4661, 2024 May 02.
Article En | MEDLINE | ID: mdl-38647546

Ionization phenomena have been widely studied for decades. With the advent of cavity technology, the question arises how quantum light affects molecular ionization. As the ionization spectrum is recorded from the neutral ground state, it is usually possible to choose cavities which exert negligible effect on the neutral ground state, but have significant impact on the ion and the ionization spectrum. Particularly interesting are cases where the ion exhibits conical intersections between close-lying electronic states, which gives rise to substantial nonadiabatic effects. Assuming single-molecule strong coupling, we demonstrate that vibrational modes irrelevant in the absence of a cavity play a decisive role when the molecule is in the cavity. Here, dynamical symmetry breaking is responsible for the ion-cavity coupling and high symmetry enables control of the coupling via molecular orientation relative to the cavity field polarization. Significant impact on the spectrum by the cavity is found and shown to even substantially increase for less symmetric molecules.

5.
ESMO Open ; 9(5): 102995, 2024 May.
Article En | MEDLINE | ID: mdl-38636292

BACKGROUND: Fifteen to thirty percent of all patients with metastatic breast cancer (MBC) develop brain metastases (BCBMs). Recently, the antibody-drug conjugates (ADCs) sacituzumab govitecan (SG) and trastuzumab deruxtecan (T-DXd) have shown to be highly effective in the treatment of MBC. However, there are only limited data whether these macromolecules are also effective in patients with BCBMs. We therefore aimed to examine the efficacy of SG and T-DXd in patients with stable and active BCBMs in a multicenter real-world analysis. PATIENTS AND METHODS: Female patients with stable or active BCBMs who were treated with either SG or T-DXd at three breast centers in Germany before 30 June 2023 were included. As per local clinical praxis, chemotherapy efficacy was evaluated by whole-body computed tomography and cranial magnetic resonance imaging at baseline and at least every 3 months according to local standards. Growth dynamics of BCBMs were assessed by board-certified neuroradiologists. RESULTS: Of 26 patients, with a median of 2.5 prior therapy lines in the metastatic setting (range 2-15), 12 (43%) and 16 (57%) patients received SG and T-DXd, respectively. Out of the 12 patients who received SG, 2 (17%) were subsequently treated with T-DXd. Five out of 12 (42%) and 5 out of 16 (31%) patients treated with SG and T-DXd, respectively, had active BCBMs at treatment initiation. The intracranial disease control rate was 42% [95% confidence interval (CI) 13% to 71%] for patients treated with SG and 88% (95% CI 72% to 100%) for patients treated with T-DXd. After a median follow-up of 12.7 months, median intracranial progression-free survival was 2.7 months (95% CI 1.6-10.5 months) for SG and 11.2 months (95% CI 7.5-23.7 months) for T-DXd. CONCLUSIONS: SG and T-DXd showed promising clinical activity in both stable and active BCBMs. Further prospective clinical studies designed to investigate the efficacy of modern ADCs on active and stable BCBMs are urgently needed.


Antibodies, Monoclonal, Humanized , Brain Neoplasms , Breast Neoplasms , Camptothecin , Immunoconjugates , Trastuzumab , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Middle Aged , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Adult , Aged , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , Camptothecin/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Retrospective Studies
6.
J Chem Phys ; 160(6)2024 Feb 14.
Article En | MEDLINE | ID: mdl-38349633

The interplay of molecules gives rise to collective phenomena absent in a single molecule. Many examples of collective phenomena have been reported as their knowledge is essential for understanding the behavior of matter. Here, we consider molecules sufficiently separated from each other to not form chemical bonds. If these molecules are excited, e.g., by a weak laser, can they concertedly relax by emitting a single high-energy photon possessing the total energy of all the relaxing molecules? We show that this concerted emission process is indeed possible. We estimate its probability and analyze its dependence on molecular properties, intermolecular distances, and relative orientations of the molecules. A numerical example on two pyridine molecules is given. The concerted emission found is a fundamental process expected to be operative in gas phase and clusters. Its true relevance lies in its intimate relationship to concerted emission of virtual photons and thus to collective energy transfer ionizing neighboring systems. The estimated rates and examples discussed of this collective intermolecular Coulombic decay shed much light on recent puzzling experiments.

7.
Pharmacology ; 108(6): 550-564, 2023.
Article En | MEDLINE | ID: mdl-37820589

INTRODUCTION: Oxidative stress and inflammation are major factors contributing to the progressive death of dopaminergic neurons in Parkinson's disease (PD). Recent studies have demonstrated that morphine's biosynthetic pathway, coupled with nitric oxide (NO) release, is evolutionarily conserved throughout animals and humans. Moreover, dopamine is a key precursor for morphine biosynthesis. METHOD: The present study evaluated a series of preclinical experiments to evaluate the effects of low-level morphine treatment upon neuro-immune tissues exposed to rotenone and 6-OHDA as models of PD, followed by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell proliferation assay and cell/tissue computer-assisted imaging analyses to assess cell/neuronal viability. RESULTS: Morphine at normal physiological concentrations (i.e., 10-6 M and 10-7 M) provided neuroprotection, as it significantly inhibited rotenone and 6-OHDA dopaminergic insults; thereby, reducing and/or forestalling cell death in invertebrate ganglia and human nerve cells. To ensure that morphine caused this neuroprotective effect, naloxone, a potent opiate receptor antagonist, was employed and the results showed that it blocked morphine's neuroprotective effects. Additionally, co-incubation of NO synthase inhibitor L-NAME also blocked morphine's neuroprotective effects against rotenone and 6-OHDA insults. CONCLUSIONS: Taken together, the present preclinical study showed that while morphine can attenuate lipopolysaccharide-induced inflammation and cell death, both naloxone and L-NAME can abolish this effect. Preincubation of morphine precursors (i.e., L-3,4-dihydroxyphenylalanine, reticuline, and trihexyphenidyl [THP] at physiological concentrations) mimics the observed morphine effect. However, high concentrations of THP, a precursor of the morphine biosynthetic pathway, induced cell death, indicating the physiological importance of morphine biosynthesis in neural tissues. Thus, understanding the morphine biosynthetic pathway coupled with a NO signaling mechanism as a molecular target for neuroprotection against oxidative stress and inflammation in other preclinical models of PD is warranted.


Neuroprotective Agents , Parkinson Disease , Animals , Humans , Parkinson Disease/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidopamine/metabolism , Oxidopamine/pharmacology , Oxidopamine/therapeutic use , NG-Nitroarginine Methyl Ester/pharmacology , Rotenone/pharmacology , Rotenone/metabolism , Rotenone/therapeutic use , Oxidative Stress , Morphine/pharmacology , Naloxone/pharmacology , Dopaminergic Neurons , Inflammation/drug therapy , Inflammation/metabolism , Signal Transduction
8.
Pharmacology ; 108(6): 599-606, 2023.
Article En | MEDLINE | ID: mdl-37703842

Avians differ from mammals, especially in brain architecture and metabolism. Taurine, an amino acid basic to metabolism and bioenergetics, has been shown to have remarkable effects on metabolic syndrome and ameliorating oxidative stress reactions across species. However, less is known regarding these metabolic relationships in the avian model. The present study serves as a preliminary report that examined how taurine might affect avian metabolism in an aged model system. Two groups of pigeons (Columba livia) of mixed sex, a control group and a group that received 48 months of taurine supplementation (0.05% w/v) in their drinking water, were compared by using blood panels drawn from their basilic vein by a licensed veterinarian. From the blood panel data, taurine treatment generated higher levels of three ATP-related enzymes: glutamate dehydrogenase (GLDH), lactate dehydrogenase (LDH), and creatine kinase (CK). In this preliminary study, the role that taurine treatment might play in the adult aged pigeon's metabolism on conserved traits such as augmenting insulin production as well as non-conserved traits maintaining high levels of ATP-related enzymes was examined. It was found that taurine treatment influenced the avian glucose metabolism similar to mammals but differentially effected avian ATP-related enzymes in a unique way (i.e., ∼×2 increase in CK and LDH with a nearly ×4 increase in GLDH). Notably, long-term supplementation with taurine had no negative effect on parameters of lipid and protein metabolism nor liver enzymes. The preliminary study suggests that avians may serve as a unique model system for investigating taurine metabolism across aging with long-term health implications (e.g., hyperinsulinemia). However, the suitability of using the model would require researchers to tightly control for age, sex, dietary intake, and exercise conditions as laboratory-housed avian present with very different metabolic panels than free-flight avians, and their metabolic profile may not correlate one-to-one with mammalian data.


Dietary Supplements , Taurine , Animals , Taurine/pharmacology , Columbidae/metabolism , Glucose/metabolism , Adenosine Triphosphate , Mammals/metabolism
10.
Chem Sci ; 14(26): 7230-7236, 2023 Jul 05.
Article En | MEDLINE | ID: mdl-37416703

Anions play an important role in many fields of chemistry. Many molecules possess stable anions, but these anions often do not have stable electronic excited states and the anion loses its excess electron once excited. All the known stable valence excited states of anions are singly-excited states, i.e., valence doubly-excited states have not been reported. As excited states are relevant for numerous applications, and constitute basic properties, we searched for valence doubly-excited states which are stable, i.e., exhibit energies below that of the ground state of the respective neutral molecule. We concentrated on two promising prototype candidates, the anions of the smallest endocircular carbon ring Li@C12 and of the smallest endohedral fullerene Li@C20. By employing accurate state-of-the-art many-electron quantum chemistry methods, we investigated the low-lying excited states of these anions and found that they possess several low-lying stable singly-excited states and, in particular, a stable doubly-excited state each. It is noteworthy that the found doubly-excited state of Li@C12- possesses a cumulenic carbon ring in sharp contrast to the ground and singly-excited states. The findings shed light on how to design anions with stable valence singly- and doubly-excited states. Possible applications are mentioned.

11.
J Neurosci Methods ; 393: 109892, 2023 06 01.
Article En | MEDLINE | ID: mdl-37230258

BACKGROUND: Amyloid beta (Aß) peptides, such as Aß1-40 or Aß1-42 are regarded as hallmark neuropathological biomarkers associated with Alzheimer's disease (AD). The formation of an aggregates by Aß1-40 or Aß1-42-coated gold nano-particles are hypothesized to contain conformation of Aß oligomers, which could exist only at an initial stage of fibrillogenesis. NEW METHOD: The attempt of in-situ detection of externally initiated gold colloid (ca. 80 nm diameter) aggregates in the middle section of the hippocampus of the Long Evans Cohen's Alzheimer's disease rat model was conducted through the Surface Enhanced Raman Scattering (SERS) method. RESULTS: The SERS spectral features contained modes associated with ß-sheet interactions and a significant number of modes that were previously reported in SERS shifts for Alzheimer diseased rodent and human brain tissues; thereby, strongly implying a containment of amyloid fibrils. The spectral patterns were further examined and compared with those collected from in-vitro gold colloid aggregates which were formed from Aß1-40 - or Aß1-42 -coated 80 nm gold colloid under pH ∼4, pH ∼7, and pH ∼10, and the best matched datasets were found with that of the aggregates of Aß1-42 -coated 80 nm gold colloid at ∼pH 4.0. The morphology and physical size of this specific gold colloid aggregate was clearly different from those found in-vitro. COMPARISON WITH EXISTING METHOD(S): The amyloid fibril with a ß-sheet conformation identified in previously reported in AD mouse/human brain tissues was involved in a formation of the gold colloid aggregates. However, to our surprise, best explanation for the observed SERS spectral features was possible with those in vitro Aß1-42 -coated 80 nm gold colloid under pH ∼4. CONCLUSIONS: A formation of gold colloid aggregates was confirmed in the AD rat hippocampal brain section with unique physical morphology compared to those observed in in-vitro Aß1-42 or Aß1-40 mediated gold colloid aggregates. It was concluded that a ß-sheet conformation identified in previously reported in AD mouse/human brain tissues was in volved in a formation of the gold colloid aggregates.


Alzheimer Disease , Rats , Mice , Humans , Animals , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid , Gold Colloid , Spectrum Analysis, Raman , Peptide Fragments , Rats, Long-Evans , Hippocampus/metabolism
13.
J Phys Chem Lett ; 14(6): 1418-1426, 2023 Feb 16.
Article En | MEDLINE | ID: mdl-36731025

After ionization of an inner-valence electron of molecules, the resulting cation-radicals store substantial internal energy which, if sufficient, can trigger ejection of an additional electron in an Auger decay usually followed by molecule fragmentation. In the environment, intermolecular Coulombic decay (ICD) and electron-transfer mediated decay (ETMD) are also operative, resulting in one or two electrons being ejected from a neighbor, thus preventing the fragmentation of the initially ionized molecule. These relaxation processes are investigated theoretically for prototypical heterocycle-water complexes of imidazole, pyrrole, and pyridine. It is found that the hydrogen-bonding site of the water molecule critically influences the nature and energetics of the electronic states involved, opening or closing certain relaxation processes of the inner-valence ionized system. Our results indicate that the relaxation mechanisms of biologically relevant systems with inner-valence vacancies on their carbon atoms can strongly depend on the presence of the electron-density donating or accepting neighbor, either water or another biomolecule.

14.
Commun Phys ; 6(1): 111, 2023.
Article En | MEDLINE | ID: mdl-38665403

The interaction of atoms and molecules with quantum light as realized in cavities has become a highly topical and fast growing research field. This interaction leads to hybrid light-matter states giving rise to new phenomena and opening up pathways to control and manipulate properties of the matter. Here, we substantially extend the scope of the interaction by allowing free electrons to enter the cavity and merge and unify the two active fields of electron scattering and quantum-light-matter interaction. In the presence of matter, hybrid metastable states are formed at electron energies of choice. The properties of these states depend strongly on the frequency and on the light-matter coupling of the cavity. The incoming electrons can be captured by the matter inside the cavity solely due to the presence of the cavity. The findings are substantiated by an explicit example and general consequences are discussed.

15.
Chem Commun (Camb) ; 58(90): 12612-12615, 2022 Nov 10.
Article En | MEDLINE | ID: mdl-36285826

Polaritons - hybrid light-matter states formed in cavity - strongly change the properties of the underlying matter. In optical or plasmonic nanocavities, polaritons decay by radiative emission of the cavity, which is accessible experimentally. Due to the interaction of a molecule with the quantized radiation field, polaritons exhibit light-induced conical intersections (LICIs) which dramatically influence the nuclear dynamics of molecular polaritons. We show that ultrafast radiative emission from the lower polariton is controlled by the geometric phase imposed by the LICI. This finding provides insight into the process of emission and, furthermore, allows one to compute these signals by augmenting the Born-Oppenheimer approximation for polaritons with a geometric phase term.

16.
Front Mol Neurosci ; 15: 912146, 2022.
Article En | MEDLINE | ID: mdl-36061362

Behavioral neuroscience tests such as the Light/Dark Test, the Open Field Test, the Elevated Plus Maze Test, and the Three Chamber Social Interaction Test have become both essential and widely used behavioral tests for transgenic and pre-clinical models for drug screening and testing. However, as fast as the field has evolved and the contemporaneous involvement of technology, little assessment of the literature has been done to ensure that these behavioral neuroscience tests that are crucial to pre-clinical testing have well-controlled ethological motivation by the use of lighting (i.e., Lux). In the present review paper, N = 420 manuscripts were examined from 2015 to 2019 as a sample set (i.e., n = ~20-22 publications per year) and it was found that only a meager n = 50 publications (i.e., 11.9% of the publications sampled) met the criteria for proper anxiogenic and anxiolytic Lux reported. These findings illustrate a serious concern that behavioral neuroscience papers are not being vetted properly at the journal review level and are being released into the literature and public domain making it difficult to assess the quality of the science being reported. This creates a real need for standardizing the use of Lux in all publications on behavioral neuroscience techniques within the field to ensure that contributions are meaningful, avoid unnecessary duplication, and ultimately would serve to create a more efficient process within the pre-clinical screening/testing for drugs that serve as anxiolytic compounds that would prove more useful than what prior decades of work have produced. It is suggested that improving the standardization of the use and reporting of Lux in behavioral neuroscience tests and the standardization of peer-review processes overseeing the proper documentation of these methodological approaches in manuscripts could serve to advance pre-clinical testing for effective anxiolytic drugs. This report serves to highlight this concern and proposes strategies to proactively remedy them as the field moves forward for decades to come.

17.
Neuroscience ; 500: 63-78, 2022 09 15.
Article En | MEDLINE | ID: mdl-35961524

Despite the presence of multiple pharmacotherapeutic options, incidence rates for depressive disorders continue to rise. Nonpharmacological approaches (e.g., cognitive and behavioral therapies) exhibit encouraging efficacy rates; however, a lack of preclinical models has prevented progress in the identification of relevant neurobiological mechanisms of these approaches. Accordingly, the effort-based reward (EBR) preclinical model exposes rats to response-outcome (R-O) contingencies and provides an opportunity to investigate behavioral clinical approaches. In the current study, male and female rats were assigned to either an EBR contingent- or noncontingent-trained group and exposed to 7 weeks of training. Neuroadaptive cognitive responses were assessed in a cognitive uncertainty task (UT) and an object pattern separation task (OPST). Although no significant effects of EBR were observed in the UT, EBR contingent-trained rats approached the novel panel in the most difficult trial of the OPST faster than the noncontingent-trained group. Additionally, female EBR contingent-trained rats exhibited increased engagement with the novel stimulus panel across all trials. Examination of brain-derived neurotrophic factor (BDNF) in the lateral habenula (LHb), a putative neurobiological target for depressive symptoms, revealed lower BDNF immunoreactivity in EBR contingent-trained rats. Females in both training groups exhibited higher dehydroepiandrosterone/cortisol (DHEA/CORT) ratios, suggesting, along with the increased engagement with novel stimulus panels, that female rats may be more responsive to EBR contingency training than males. Together, these results suggest that EBR contingency training offers promise as a preclinical rat model for behavioral therapeutic interventions for depressive symptoms leading to a clearer understanding of putative neurobiological mechanisms.


Brain-Derived Neurotrophic Factor , Depression , Animals , Cognition , Depression/psychology , Depression/therapy , Female , Male , Rats , Rats, Long-Evans , Reward
18.
Adv Exp Med Biol ; 1370: 381-393, 2022.
Article En | MEDLINE | ID: mdl-35882812

Researchers have begun to direct their research to focus on the use of taurine as a psychopharmacotherapeutic compound to treat a wide range of health- related conditions as well as neuropathological diseases. Moreover, taurine has been shown to improve emotional and cognitive declines associated with senescence in neurotypical animal models. However, despite these advances in the field of taurine therapeutics, much less is known regarding the effects of sex and taurine on neurotypical animal models that are then manipulated, modified, and/or mutated to study human diseases. The present study sought to investigate this matter in a Long Evans Hooded rat model of mature age (i.e., postnatal day 60-90) in an active avoidance test (AAT). Rats were trained for 20 trials, given a 1 h. test break, retrained for another 20 trials, and then tested at 24 h, 48 h, and 1 week for learning and memory retention. An N = 63 rats were randomly assigned to three groups: (1) Control (n = 22), (2) Taurine Pre-Train (n = 19), and (3) Taurine Post-Train (n = 20). The aim of the present study was to determine the effects of taurine given 15 min before training when compared to being given after training but 15 min before testing at 24 h on learning and memory consolidation of the AAT. The results showed in Control rats that females had shorter latencies to cross in the shuttle box, increased rates of correct learning by the % Avoids/Escapes, and decreased rates of learning errors by the % Shocks. In Taurine Post-Train male rats, taurine treatment decreased their latency to cross in the shuttle box and their rate of learning errors by the % Shocks at 24 h and 48 h Testing, but it had no effect on their rate of correct learning by the % Avoids/Escapes when compared to Control and Taurine Pre-Train male rats. In contrast, Taurine Post-Train female rats increased their latency to cross in the shuttle box during Training, 24 h and 48 h Testing, when compared to the Control and Taurine Pre-Train female rats. Further, Taurine Post-Train female rats decreased their rate of learning % Avoids/Escapes and increased the rate of learning errors % Shocks when compared to Control female rats during Training and 24 h Testing but decreased their rate of learning % Avoids/Escapes and increased the rate of learning errors % Shocks when compared to Taurine Pre-Train female rats across all test conditions. These findings suggest that neurotypical female rats may be more sensitive to the aversive stimuli (i.e., foot shocks) used in the AAT as a motivating factor for learning that may cause paradoxical behavioral learning and memory patterns. This phenomenon raises an important concern for researchers to consider when studying learning and behavioral tests in rodents that use aversive and non-aversive stimuli or a combination of both such as in the AAT. Taurine, albeit neuroprotective, may not have as much benefit in a neurotypical animal model and may increase the susceptibility for anxiogenic behaviors and interfere with cognitive learning and memory behaviors. Therefore, the mechanistic way(s) in which taurine can treat, recovery, ameliorate, and forestall other neuropathological diseases in animal models may have different psychopharmacodynamics and psychopharmacokinetics in a neurotypical animal model and should be studied with caution. This does not preclude the continued investigation of taurine psychopharmacotherapies for neuropathological diseases but encourages the careful investigation of taurine supplementation and treatment in neurotypical animals as paradoxical behavioral and cognitive outcomes have been observed herein.


Avoidance Learning , Taurine , Animals , Emotions , Female , Humans , Male , Memory , Rats , Rats, Long-Evans , Taurine/pharmacology
19.
Adv Exp Med Biol ; 1370: 461-479, 2022.
Article En | MEDLINE | ID: mdl-35882819

Lead (Pb2+) is a developmental neurotoxicant that causes alterations in the brain's excitation-to-inhibition (E/I) balance by disrupting the development of the GABAergic systems. These GABAergic disruptions have persistent neurobiological and neurobehavioral structure-function relationships that can be examined using animal models of Pb2+ exposure. Further, taurine, a GABA-AR agonist, has been shown to offer neuroprotection against neurodevelopmental Pb2+ exposure and senescence. The present study evaluated the effects of Pb2+ exposure (i.e., at 150 ppm and 1,000 ppm doses) on Long Evans hooded rats during the perinatal period of development on locomotor activity in the open field (OF) and anxiety-like behaviors in the elevated plus maze (EPM). This was followed by an examination of brain mass using an encephalization quotient (EQ) and isotropic fractionation (ITF) of total cells and the number of neurons and non-neuronal cells in the prefrontal cortex, hippocampus, and diencephalon. The results suggest that neurodevelopmental Pb2+ exposure caused persistent anxiety-like behaviors in both the OF and EPM with associated changes in EQ, but not ITF-determined cell density. Further, taurine treatment was observed to compensate for Pb2+ exposure in the behavioral assessments although precise neurobiological mechanisms remain unknown. Thus, more work is required to evaluate the role of taurine and other anxiolytic compounds in the alleviation of neurotoxicant-induced neurobehavioral syndromes and their associated neurobiological correlates.


Anti-Anxiety Agents , Taurine , Animals , Anti-Anxiety Agents/pharmacology , Anxiety/chemically induced , Anxiety/drug therapy , Female , Hippocampus , Lead/toxicity , Pregnancy , Rats , Rats, Long-Evans , Taurine/pharmacology
20.
Adv Exp Med Biol ; 1370: 481-496, 2022.
Article En | MEDLINE | ID: mdl-35882820

Lead (Pb2+) is a developmental neurotoxicant that disrupts the GABA-shift and subsequently causes alterations in the brain's excitation-to-inhibition (E/I) balance. This finding suggests that neurodevelopmental Pb2+ exposures may increase the risk of brain excitability and/or seizure susceptibility. Prior studies have suggested that neurodevelopmental Pb2+ exposures may cause excitotoxicity of cholinergic neurons, but little to no research has further investigated these potential relationships. The present study sought to evaluate the potential for perinatal neurodevelopmental Pb2+ exposures of 150 ppm and 1000 ppm on pilocarpine-induced seizures through the M1 receptor. The study also evaluated the potential for sex- and treatment-dependent differences in brain excitability. The study revealed that Control females have elevated cholinergic brain excitability and decreased GABAergic inhibition in response to pilocarpine-induced seizures. At low Pb2+ exposures, males exhibited more cholinergic brain excitability, whereas at higher Pb2+ exposures, females exhibited more cholinergic brain excitability. Further, taurine was able to provide neuroprotection against pilocarpine-induced seizures in males, whereas females did not reveal such observations. Thus, the present study adds new insights into the potential for cholinergic seizure susceptibility as a function of sex and the dosage ofneurodevelopmental Pb2+ exposure and how taurine may provide selective pharmacodynamics to treat or recover cholinergic system aberrations induced by neurotoxicants.


Pilocarpine , Taurine , Cholinergic Agents/adverse effects , Female , Humans , Lead/toxicity , Male , Neuropharmacology , Pilocarpine/toxicity , Pregnancy , Seizures/chemically induced , Taurine/pharmacology
...