Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(28): 18202-18210, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38950893

RESUMEN

Stacking van der Waals crystals allows for the on-demand creation of a periodic potential landscape to tailor the transport of quasiparticle excitations. We investigate the diffusion of photoexcited electron-hole pairs, or excitons, at the interface of WS2/WSe2 van der Waals heterostructure over a wide range of temperatures. We observe the appearance of distinct interlayer excitons for parallel and antiparallel stacking and track their diffusion through spatially and temporally resolved photoluminescence spectroscopy from 30 to 250 K. While the measured exciton diffusivity decreases with temperature, it surprisingly plateaus below 90 K. Our observations cannot be explained by classical models like hopping in the moiré potential. A combination of ab initio theory and molecular dynamics simulations suggests that low-energy phonons arising from the mismatched lattices of moiré heterostructures, also known as phasons, play a key role in describing and understanding this anomalous behavior of exciton diffusion. Our observations indicate that the moiré potential landscape is dynamic down to very low temperatures and that the phason modes can enable efficient transport of energy in the form of excitons.

2.
Microsyst Nanoeng ; 7: 40, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567754

RESUMEN

The combination of electrophysiology and optogenetics enables the exploration of how the brain operates down to a single neuron and its network activity. Neural probes are in vivo invasive devices that integrate sensors and stimulation sites to record and manipulate neuronal activity with high spatiotemporal resolution. State-of-the-art probes are limited by tradeoffs involving their lateral dimension, number of sensors, and ability to access independent stimulation sites. Here, we realize a highly scalable probe that features three-dimensional integration of small-footprint arrays of sensors and nanophotonic circuits to scale the density of sensors per cross-section by one order of magnitude with respect to state-of-the-art devices. For the first time, we overcome the spatial limit of the nanophotonic circuit by coupling only one waveguide to numerous optical ring resonators as passive nanophotonic switches. With this strategy, we achieve accurate on-demand light localization while avoiding spatially demanding bundles of waveguides and demonstrate the feasibility with a proof-of-concept device and its scalability towards high-resolution and low-damage neural optoelectrodes.

3.
Histopathology ; 79(3): 315-324, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32931030

RESUMEN

AIMS: Secretory carcinoma (SC) (synonym: mammary analogue secretory carcinoma) is a low-grade salivary gland tumour that occurs in both major and minor salivary glands. SC is known for its wide morphological, architectural and immunohistochemical spectrum, which overlaps with those of several salivary gland neoplasms, including acinic cell carcinoma (AciCC) and intercalated duct-type intraductal carcinoma (IDC) in major salivary glands, and polymorphous adenocarcinoma (PAC) in minor salivary glands. These tumours share with SC some morphological features and SOX10 immunoreactivity; also, with the exception of AciCC, they all coexpress S100 and mammaglobin. METHODS AND RESULTS: We compared MUC4 and mammaglobin expression in 125 salivary gland carcinomas (54 genetically confirmed SCs, 20 AciCCs, 21 PACs, and 30 IDCs) to evaluate the potential of these two markers to differentiate these entities. Moderate to strong diffuse MUC4 positivity was detected in 49 SCs (90.7%), as compared with none of the IDCs and PACs. In contrast, mammaglobin was frequently expressed in SCs (30 of 36 cases; 83.3%), IDCs (24/28; 85.7%), and PACs (7/19; 36.8%). Two of three high-grade SCs lost MUC4 expression in the high-grade tumour component. No significant correlation was found between MUC4 expression and the fusion variant in SC (ETV6-NTRK versus non-ETV6-NTRK). CONCLUSION: The results of our study identify MUC4 as a sensitive (90.7%) and specific (100%) marker for SC, with high positive (100%) and negative (93.4%) predictive values. Thus, MUC4 may be used as a surrogate for SC in limited biopsy material and in cases with equivocal morphology.


Asunto(s)
Diagnóstico Diferencial , Carcinoma Secretor Análogo al Mamario/diagnóstico , Mucina 4/análisis , Neoplasias de las Glándulas Salivales , Biomarcadores de Tumor/análisis , Carcinoma/diagnóstico , Carcinoma/patología , Carcinoma de Células Acinares/diagnóstico , Carcinoma de Células Acinares/patología , Humanos , Mamoglobina A/metabolismo , Carcinoma Secretor Análogo al Mamario/metabolismo , Carcinoma Secretor Análogo al Mamario/patología , Neoplasias de las Glándulas Salivales/diagnóstico , Neoplasias de las Glándulas Salivales/metabolismo , Neoplasias de las Glándulas Salivales/patología , Glándulas Salivales/patología
4.
ACS Nano ; 14(10): 13433-13440, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32909735

RESUMEN

Monolayer transition metal dichalcogenides (TMDCs) are promising materials for next generation optoelectronic devices. The exciton diffusion length is a critical parameter that reflects the quality of exciton transport in monolayer TMDCs and limits the performance of many excitonic devices. Although diffusion lengths of a few hundred nanometers have been reported in the literature for as-exfoliated monolayers, these measurements are convoluted by neutral and charged excitons (trions) that coexist at room temperature due to natural background doping. Untangling the diffusion of neutral excitons and trions is paramount to understand the fundamental limits and potential of new optoelectronic device architectures made possible using TMDCs. In this work, we measure the diffusion lengths of neutral excitons and trions in monolayer MoS2 by tuning the background carrier concentration using a gate voltage and utilizing both steady state and transient spectroscopy. We observe diffusion lengths of 1.5 µm and 300 nm for neutral excitons and trions, respectively, at an optical power density of 0.6 W cm-2.

5.
ACS Nano ; 14(6): 6999-7007, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32459460

RESUMEN

Förster resonant energy transfer (FRET)-mediated exciton diffusion through artificial nanoscale building block assemblies could be used as an optoelectronic design element to transport energy. However, so far, nanocrystal (NC) systems supported only diffusion lengths of 30 nm, which are too small to be useful in devices. Here, we demonstrate a FRET-mediated exciton diffusion length of 200 nm with 0.5 cm2/s diffusivity through an ordered, two-dimensional assembly of cesium lead bromide perovskite nanocrystals (CsPbBr3 PNCs). Exciton diffusion was directly measured via steady-state and time-resolved photoluminescence (PL) microscopy, with physical modeling providing deeper insight into the transport process. This exceptionally efficient exciton transport is facilitated by PNCs' high PL quantum yield, large absorption cross section, and high polarizability, together with minimal energetic and geometric disorder of the assembly. This FRET-mediated exciton diffusion length matches perovskites' optical absorption depth, thus enabling the design of device architectures with improved performances and providing insight into the high conversion efficiencies of PNC-based optoelectronic devices.

6.
Nanoscale ; 11(16): 7613-7623, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30964499

RESUMEN

Lead halide perovskites, owing to their flexible, scalable chemistry and promising physical properties are attracting increasing attention for solution-processed optoelectronic and photonic technologies. Despite their well-known 'defect tolerant' electronic structure, studies highlighted the active role of shallow and deep defect states, as well as of oxidative environmental conditions, on the optical and electrical behavior of perovskite nanocubes, films and single bulk crystals. To date, however, no in-depth systematic study of the surface trap-mediated processes in perovskite materials of different dimensionality has been conducted. In this work, we aim to bridge this gap by using O2 as a molecular probe for the effects of surface states on the exciton recombination processes of nanocubes (NCs), nanowires (NWs), nanosheets (NSs) and bulk single crystals (SCs) of CsPbBr3 perovskite. Continuous wave and time-resolved photoluminescence (PL) experiments in a controlled O2 atmosphere reveal the opposite optical response of NCs with respect to higher dimensional perovskites directly deriving from the different nature of the material surfaces. Specifically, O2 passivates surface hole-traps in NWs, NSs and SCs, leading to PL brightening with unaltered recombination dynamics. Conversely, NCs appear to be free from such surface hole-traps and exposure to O2 leads to direct extraction of photogenerated electrons that competes with radiative exciton recombination, leading to dimmed PL efficiency in atmospheric conditions. This opposite oxygen PL response demystifies the critical role of surface passivation in perovskite NCs in stark contrast to higher dimensional nanostructures and single crystals.

7.
Nano Lett ; 18(6): 3441-3448, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29722262

RESUMEN

Colloidal nanoplatelets (NPLs), owing to their efficient and narrow-band luminescence, are considered as promising candidates for solution-processable light-emitting diodes (LEDs) with ultrahigh color purity. To date, however, the record efficiencies of NPL-LEDs are significantly lower than those of more-investigated devices based on spherical nanocrystals. This is particularly true for red-emitting NPL-LEDs, the best-reported external quantum efficiency (EQE) of which is limited to 0.63% (EQE = 5% for green NPL-LEDs). Here, we address this issue by introducing a charge-regulating layer of a polar and polyelectrolytic polymer specifically engineered with complementary trimethylammonium and phosphonate functionalities that provide high solubility in orthogonal polar media with respect to the NPL active layer, compatibility with the metal cathode, and the ability to control electron injection through the formation of a polarized interface under bias. Through this synergic approach, we achieve EQE = 5.73% at 658 nm (color saturation 98%) in completely solution processed LEDs. Remarkably, exposure to air increases the EQE to 8.39%, exceeding the best reports of red NPL-LEDs by over 1 order of magnitude and setting a new global record for quantum-dot LEDs of any color embedding solution-deposited organic interlayers. Considering the emission quantum yield of the NPLs (40 ± 5%), this value corresponds to a near-unity internal quantum efficiency. Notably, our devices show exceptional operational stability for over 5 h of continuous drive in air with no encapsulation, thus confirming the potential of NPLs for efficient, high-stability, saturated LEDs.

8.
Nat Nanotechnol ; 13(2): 145-151, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29255289

RESUMEN

Electronic doping of colloidal semiconductor nanostructures holds promise for future device concepts in optoelectronic and spin-based technologies. Ag+ is an emerging electronic dopant in III-V and II-VI nanostructures, introducing intragap electronic states optically coupled to the host conduction band. With its full 4d shell Ag+ is nonmagnetic, and the dopant-related luminescence is ascribed to decay of the conduction-band electron following transfer of the photoexcited hole to Ag+. This optical activation process and the associated modification of the electronic configuration of Ag+ remain unclear. Here, we trace a comprehensive picture of the excitonic process in Ag-doped CdSe nanocrystals and demonstrate that, in contrast to expectations, capture of the photohole leads to conversion of Ag+ to paramagnetic Ag2+. The process of exciton recombination is thus inextricably tied to photoinduced magnetism. Accordingly, we observe strong optically activated magnetism and diluted magnetic semiconductor behaviour, demonstrating that optically switchable magnetic nanomaterials can be obtained by exploiting excitonic processes involving nonmagnetic impurities.

9.
Nano Lett ; 17(7): 4508-4517, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28613906

RESUMEN

Ternary CuInS2 nanocrystals (CIS NCs) are attracting attention as nontoxic alternatives to heavy metal-based chalcogenides for many technologically relevant applications. The photophysical processes underlying their emission mechanism are, however, still under debate. Here we address this problem by applying, for the first time, spectro-electrochemical methods to core-only CIS and core/shell CIS/ZnS NCs. The application of an electrochemical potential enables us to reversibly tune the NC Fermi energy and thereby control the occupancy of intragap defects involved in exciton decay. The results indicate that, in analogy to copper-doped II-VI NCs, emission occurs via radiative capture of a conduction-band electron by a hole localized on an intragap state likely associated with a Cu-related defect. We observe the increase in the emission efficiency under reductive electrochemical potential, which corresponds to raising the Fermi level, leading to progressive filling of intragap states with electrons. This indicates that the factor limiting the emission efficiency in these NCs is nonradiative electron trapping, while hole trapping is of lesser importance. This observation also suggests that the centers for radiative recombination are Cu2+ defects (preexisting and/or accumulated as a result of photoconversion of Cu1+ ions) as these species contain a pre-existing hole without the need for capturing a valence-band hole generated by photoexcitation. Temperature-controlled photoluminescence experiments indicate that the intrinsic limit on the emission efficiency is imposed by multiphonon nonradiative recombination of a band-edge electron and a localized hole. This process affects both shelled and unshelled CIS NCs to a similar degree, and it can be suppressed by cooling samples to below 100 K. Finally, using experimentally measured decay rates, we formulate a model that describes the electrochemical modulation of the PL efficiency in terms of the availability of intragap electron traps as well as direct injection of electrons into the NC conduction band, which activates nonradiative Auger recombination, or electrochemical conversion of the Cu2+ states into the Cu1+ species that are less emissive due to the need for their "activation" by the capture of photogenerated holes.

10.
Nano Lett ; 17(6): 3844-3853, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28480698

RESUMEN

Lead halide perovskite nanocrystals (NCs) are emerging as optically active materials for solution-processed optoelectronic devices. Despite the technological relevance of tracing rational guidelines for optimizing their performances and stability beyond their intrinsic resilience to structural imperfections, no in-depth study of the role of selective carrier trapping and environmental conditions on their exciton dynamics has been reported to date. Here we conduct spectro-electrochemical (SEC) experiments, side-by-side to oxygen sensing measurements on CsPbBr3 NCs for the first time. We show that the application of EC potentials controls the emission intensity by altering the occupancy of defect states without degrading the NCs. Reductive potentials lead to strong (60%) emission quenching by trapping of photogenerated holes, whereas the concomitant suppression of electron trapping is nearly inconsequential to the emission efficiency. Consistently, oxidizing conditions result in minor (5%) brightening due to suppressed hole trapping, confirming that electron traps play a minor role in nonradiative decay. This behavior is rationalized through a model that links the occupancy of trap sites with the position of the NC Fermi level controlled by the EC potential. Photoluminescence measurements in controlled atmosphere reveal strong quenching by collisional interactions with O2, which is in contrast to the photobrightening effect observed in films and single crystals. This indicates that O2 acts as a scavenger of photoexcited electrons without mediation by structural defects and, together with the asymmetrical SEC response, suggests that electron-rich defects are likely less abundant in nanostructured perovskites than in the bulk, leading to an emission response dominated by direct interaction with the environment.

11.
Nano Lett ; 17(2): 1071-1081, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28032501

RESUMEN

Ratiometric pressure sensitive paints (r-PSPs) are all-optical probes for monitoring oxygen flows in the vicinity of complex or miniaturized surfaces. They typically consist of a porous binder embedding mixtures of a reference and a sensor chromophore exhibiting oxygen-insensitive and oxygen-responsive luminescence, respectively. Here, we demonstrate the first example of an r-PSP based on a single two-color emitter that removes limitations of r-PSPs based on chromophore mixtures such as different temperature dependencies of the two chromophores, cross-readout between the reference and sensor signals and phase segregation. In our approach, we utilize a novel "double-sensor" r-PSP that features two spectrally separated emission bands with opposite responses to the O2 pressure, which boosts the sensitivity with respect to traditional reference-sensor pairs. Specifically, we use two-color-emitting dot-in-bulk CdSe/CdS core/shell nanocrystals, exhibiting red and green emission bands from their core and shell states, whose intensities are respectively enhanced and quenched in response to the increased oxygen partial pressure that effectively tunes the position of the nanocrystal's Fermi energy. This leads to a strong and reversible ratiometric response at the single particle level and an over 100% enhancement in the pressure sensitivity. Our proof-of-concept r-PSPs further exhibit suppressed cross-readout thanks to zero spectral overlap between the core and shell luminescence bands and a temperature-independent ratiometric response between 0 and 70 °C.

12.
Nano Lett ; 15(8): 5455-64, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26198761

RESUMEN

Colloidal quantum dots (QDs) are emerging as true candidates for light-emitting diodes with ultrasaturated colors. Here, we combine CdSe/CdS dot-in-rod heterostructures and polar/polyelectrolytic conjugated polymers to demonstrate the first example of fully solution-based quantum dot light-emitting diodes (QD-LEDs) incorporating all-organic injection/transport layers with high brightness, very limited roll-off and external quantum efficiency as high as 6.1%, which is 20 times higher than the record QD-LEDs with all-solution-processed organic interlayers and exceeds by over 200% QD-LEDs embedding vacuum-deposited organic molecules.

13.
Nat Commun ; 6: 6434, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25910499

RESUMEN

Colloidal quantum wells combine the advantages of size-tunable electronic properties with vast reactive surfaces that could allow one to realize highly emissive luminescent-sensing varnishes capable of detecting chemical agents through their reversible emission response, with great potential impact on life sciences, environmental monitoring, defence and aerospace engineering. Here we combine spectroelectrochemical measurements and spectroscopic studies in a controlled atmosphere to demonstrate the 'reversed oxygen-sensing' capability of CdSe colloidal quantum wells, that is, the exposure to oxygen reversibly increases their luminescence efficiency. Spectroelectrochemical experiments allow us to directly relate the sensing response to the occupancy of surface states. Magneto-optical measurements demonstrate that, under vacuum, heterostructured CdSe/CdS colloidal quantum wells stabilize in their negative trion state. The high starting emission efficiency provides a possible means to enhance the oxygen sensitivity by partially de-passivating the particle surfaces, thereby enhancing the density of unsaturated sites with a minimal cost in term of luminescence losses.

14.
Nano Lett ; 14(7): 3855-63, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24914746

RESUMEN

Colloidal "dot-in-bulk" nanocrystals (DiB NCs) consist of a quantum confined core embedded into a bulklike shell of a larger energy gap. The first reported example of this class of nanostructures are CdSe/CdS DiB NCs that are capable of producing tunable two-color emission under both weak continuous-wave optical excitation and electrical charge injection. This property is a consequence of a Coulomb blockade mechanism, which slows down dramatically intraband relaxation of shell-localized holes when the core is already occupied by a hole. Here, we demonstrate electrochemical control of dual emission from DiB NCs. Spectro-electrochemical (SEC) experiments are used to tune and probe the photoluminescence (PL) intensity and branching between the core and the shell emission channels as a function of applied electrochemical potential (VEC). To interpret the SEC data we develop a model that describes the changes in the intensities of the shell and core PL bands by relating them to the occupancies of electron and hole traps. Specifically, application of negative electrochemical potentials under which the Fermi level is shifted upward in energy leads to passivation of electron traps at the surface of the CdS shell thereby increasing the total PL quantum yield by favoring the shell emission. Simultaneously, the emission color changes from red (VEC = 0) through yellow to green (VEC = -1). Time-resolved PL measurements indicate that as the Fermi level approaches the NC conduction band-edge electrons are injected into the NC quantized states, which leads to typical signatures of negative trions observed under optical excitation. Application of positive potentials leads to activation of electron traps, which quenches both core and shell PL and leads to the reduction of the overall PL quantum efficiency. A high sensitivity of emission intensity (especially pronounced for the shell band) and the apparent emission color of DiB NCs to local electrochemical environment can enable interesting applications of these novel nanostructures in areas of imaging and sensing including, for example, ratiometric probing of intracellular pH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...