Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IUCrJ ; 10(Pt 4): 380-381, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37409804

RESUMEN

Commentary is provided on recent magnetic SANS experiments on highly inhomogeneous high-pressure-torsion manufactured metals. The ensuing progress in the theoretical description of magnetic SANS using micromagnetic theory is highlighted.

2.
Nanoscale ; 15(9): 4506-4514, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36753337

RESUMEN

We demonstrate that oleyl phosphate ligand-stabilized iron oxide nanocubes as building blocks can be assembled into 2D supercrystalline mono- and multilayers on flat YSZ substrates within a few minutes using a simple spin-coating process. As a bottom-up process, the growth takes place in a layer-by-layer mode and therefore by tuning the spin-coating parameters, the exact number of deposited monolayers can be controlled. Furthermore, ex situ scanning electron and atomic force microscopy as well as X-ray reflectivity measurements give evidence that the choice of solvent allows the control of the lattice type of the final supercrystalline monolayers. This observation can be assigned to the different Hansen solubilities of the solvents used for the nanoparticle dispersion because it determines the size and morphology of the ligand shell surrounding the nanoparticle core. Here, by using toluene and chloroform as solvents, it can be controlled whether the resulting monolayers are ordered in a square or hexagonal supercrystalline lattice.

3.
J Appl Crystallogr ; 49(Pt 2): 533-538, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27047307

RESUMEN

The results are reported of magnetic field-dependent neutron diffraction experiments on polycrystalline inert-gas condensed holmium with a nanometre crystallite size (D = 33 nm). At T = 50 K, no evidence is found for the existence of helifan(3/2) or helifan(2) structures for the nanocrystalline sample, in contrast with results reported in the literature for the single crystal. Instead, when the applied field H is increased, the helix pattern transforms progressively, most likely into a fan structure. It is the component of H which acts on the basal-plane spins of a given nanocrystallite that drives the disappearance of the helix; for nanocrystalline Ho, this field is about 1.3 T, and it is related to a characteristic kink in the virgin magnetization curve. For a coarse-grained Ho sample, concomitant with the destruction of the helix phase, the emergence of an unusual angular anisotropy (streak pattern) and the appearance of novel spin structures are observed.

4.
Biointerphases ; 11(1): 011002, 2015 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26714450

RESUMEN

Permanent implants made from titanium are widely used and successfully implemented in medicine to address problems related to orthopedic and oral disorders. However, implants that interact in all cases optimally and durably with bone tissue have yet to be developed. Here, the authors suggest a phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-ethanolamine (POPE) lipid coating to partially mimic the biological cell membrane. To improve the homogeneity of the POPE distribution on the metal surface, the lipids are applied by spray coating. It is shown that the spray coating leads to two types of multilamellar POPE structures. Our experimental results demonstrate that these coatings are stable in a liquid environment in the range of physiological temperatures due to the unique interbilayer interaction of POPE lipids. Additionally, the interaction of the POPE multilayer structure with human serum albumin is considered. A simultaneous analysis of the specular and off-specular data provides structural information necessary to assess the quality of the coating for future applications.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Difracción de Neutrones/métodos , Fosfatidiletanolaminas/análisis , Propiedades de Superficie , Titanio , Aerosoles , Humanos , Unión Proteica , Albúmina Sérica/metabolismo , Temperatura
5.
Sci Rep ; 5: 18377, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26675537

RESUMEN

The fundamental important and technologically widely employed exchange bias effect occurs in general in bilayers of magnetic thin films consisting of antiferromagnetic and ferromagnetic layers where the hard magnetization behavior of an antiferromagnetic thin film causes a shift in the magnetization curve of a soft ferromagnetic film. The minimization of the single magnetic grain size to increase the storage density and the subsequent demand for magnetic materials with very high magnetic anisotropy requires a system with high HEB. Here we report an extremely high HEB of 4 Tesla observed in a single amorphous DyCo4 film close to room temperature. The origin of the exchange bias can be associated with the variation of the magnetic behavior from the surface towards the bulk part of the film revealed by X-ray absorption spectroscopy and X-ray magnetic circular dichroism techniques utilizing the bulk sensitive transmission and the surface sensitive total electron yield modes. The competition between the atomic exchange coupling in the single film and the Zeeman interaction lead to an intrinsic exchanged coupled system and the so far highest exchange bias effect HEB = 4 Tesla reported in a single film, which is accommodated by a partial domain wall formation.

6.
Biointerphases ; 8(1): 21, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24706132

RESUMEN

Titanium is the most widely preferred metal material for bone reconstruction in orthopedics and dentistry. To improve its biological performance, various coatings can be applied. In this investigation, a biomimetic coating on a model implant surface was studied in X-ray and neutron reflectivity experiments to probe the quality of this coating, which is only few nanometers thick. Titanium was deposited on polished silicon surfaces using a magnetron sputtering technique. To improve the lipid coating's stability, a stronger van der Waals interaction was first created between the implant surface and the biomimetic coating by adding a phosphonic acid (n-octadecylphosphonic acid - OPA) monolayer onto the surfaces. Then, three monolayers of POPE (phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-ethanolamine) were transferred using the Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) techniques. The analysis of X-ray and neutron specular reflectivity data shows that OPA molecules cover the model implant surface completely and that approximately 50% coverage of POPE can be achieved by LB and LS transfer.


Asunto(s)
Lípidos/química , Titanio/química , Fosfatidiletanolaminas/química , Propiedades de Superficie
7.
J Phys Chem B ; 112(23): 6937-45, 2008 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-18489139

RESUMEN

The adsorption of mixed micelles of poly(4-(2-amino hydrochloride-ethylthio)-butylene)- block-poly(ethylene oxide), PAETB 49- b-PEO 212 and poly(4-(2-sodium carboxylate-ethylthio)-butylene)- block-poly(ethylene oxide), PCETB 47- b-PEO 212 on solid/liquid interfaces has been studied with light, X-ray, and neutron reflectometry. The structure of the adsorbed layer can be described with a two-layer model consisting of an inner layer formed by the coacervate of the polyelectrolyte blocks PAETB 49 and PCETB 47 ( approximately 1 nm) and an outer layer of PEO 212 blocks ( approximately 6 nm). The micelles unfold upon adsorption forming a rather homogeneous flat layer that exposes its polyethylene oxide chains into the solution, thus rendering the surface antifouling after modification with the micelles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA