Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Commun ; 15(1): 1426, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365893

RESUMEN

Cofilin family proteins have essential roles in remodeling the cytoskeleton through filamentous actin depolymerization and severing. The short, unstructured N-terminal region of cofilin is critical for actin binding and harbors the major site of inhibitory phosphorylation. Atypically for a disordered sequence, the N-terminal region is highly conserved, but specific aspects driving this conservation are unclear. Here, we screen a library of 16,000 human cofilin N-terminal sequence variants for their capacity to support growth in S. cerevisiae in the presence or absence of the upstream regulator LIM kinase. Results from the screen and biochemical analysis of individual variants reveal distinct sequence requirements for actin binding and regulation by LIM kinase. LIM kinase recognition only partly explains sequence constraints on phosphoregulation, which are instead driven to a large extent by the capacity for phosphorylation to inactivate cofilin. We find loose sequence requirements for actin binding and phosphoinhibition, but collectively they restrict the N-terminus to sequences found in natural cofilins. Our results illustrate how a phosphorylation site can balance potentially competing sequence requirements for function and regulation.


Asunto(s)
Actinas , Cofilina 1 , Humanos , Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Cofilina 1/genética , Cofilina 1/metabolismo , Quinasas Lim/metabolismo , Fosforilación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
bioRxiv ; 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38293145

RESUMEN

Accurate chromosome segregation during mitosis requires that all chromosomes establish stable bi-oriented attachments with the spindle apparatus. Kinetochores form the interface between chromosomes and spindle microtubules and as such are under tight control by complex regulatory circuitry. As part of the chromosomal passenger complex (CPC), the Aurora B kinase plays a central role within this circuitry by destabilizing improper kinetochore-microtubule attachments and relaying the attachment status to the spindle assembly checkpoint, a feedback control system that delays the onset of anaphase by inhibiting the anaphase-promoting complex/cyclosome. Intriguingly, Aurora B is conserved even in kinetoplastids, an evolutionarily divergent group of eukaryotes, whose kinetochores are composed of a unique set of structural and regulatory proteins. Kinetoplastids do not have a canonical spindle checkpoint and it remains unclear how their kinetochores are regulated to ensure the fidelity and timing of chromosome segregation. Here, we show in Trypanosoma brucei, the kinetoplastid parasite that causes African sleeping sickness, that inhibition of Aurora B using an analogue-sensitive approach arrests cells in metaphase, with a reduction in properly bi-oriented kinetochores. Aurora B phosphorylates several kinetochore proteins in vitro, including the N-terminal region of the divergent Bub1-like protein KKT14. Depletion of KKT14 partially overrides the cell cycle arrest caused by Aurora B inhibition, while overexpression of a non-phosphorylatable KKT14 protein results in a prominent delay in the metaphase-to-anaphase transition. Finally, we demonstrate using a nanobody-based system that re-targeting the catalytic module of the CPC to the outer kinetochore is sufficient to promote mitotic exit but causes massive chromosome mis-segregation in anaphase. Our results indicate that the CPC and KKT14 are involved in an unconventional pathway controlling mitotic exit and error-free chromosome segregation in trypanosomes.

3.
Proc Natl Acad Sci U S A ; 120(48): e2316599120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37988460

RESUMEN

Mitogen-activated protein kinase (MAPK) cascades are essential for eukaryotic cells to integrate and respond to diverse stimuli. Maintaining specificity in signaling through MAPK networks is key to coupling distinct inputs to appropriate cellular responses. Docking sites-short linear motifs found in MAPK substrates, regulators, and scaffolds-can promote signaling specificity through selective interactions, but how they do so remains unresolved. Here, we screened a proteomic library for sequences interacting with the MAPKs extracellular signal-regulated kinase 2 (ERK2) and p38α, identifying selective and promiscuous docking motifs. Sequences specific for p38α had high net charge and lysine content, and selective binding depended on a pair of acidic residues unique to the p38α docking interface. Finally, we validated a set of full-length proteins harboring docking sites selected in our screens to be authentic MAPK interactors and substrates. This study identifies features that help define MAPK signaling networks and explains how specific docking motifs promote signaling integrity.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteómica , Unión Proteica , Transducción de Señal , Fosforilación , Sitios de Unión
4.
bioRxiv ; 2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37425676

RESUMEN

Cofilin family proteins have essential roles in remodeling the cytoskeleton through filamentous actin depolymerization and severing. The short unstructured N-terminal region of cofilin is critical for actin binding and harbors the major site of inhibitory phosphorylation. Atypically for a disordered sequence, the N-terminal region is highly conserved, but the aspects of cofilin functionality driving this conservation are not clear. Here, we screened a library of 16,000 human cofilin N-terminal sequence variants for their capacity to support growth in S. cerevisiae in the presence or absence of the upstream regulator LIM kinase. Results from the screen and subsequent biochemical analysis of individual variants revealed distinct sequence requirements for actin binding and regulation by LIM kinase. While the presence of a serine, rather than threonine, phosphoacceptor residue was essential for phosphorylation by LIM kinase, the native cofilin N-terminus was otherwise a suboptimal LIM kinase substrate. This circumstance was not due to sequence requirements for actin binding and severing, but rather appeared primarily to maintain the capacity for phosphorylation to inactivate cofilin. Overall, the individual sequence requirements for cofilin function and regulation were remarkably loose when examined separately, but collectively restricted the N-terminus to sequences found in natural cofilins. Our results illustrate how a regulatory phosphorylation site can balance potentially competing sequence requirements for function and regulation.

5.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37292991

RESUMEN

Despite recent advances in the treatment of melanoma, many patients with metastatic disease still succumb to their disease. To identify tumor-intrinsic modulators of immunity to melanoma, we performed a whole-genome CRISPR screen in melanoma and identified multiple components of the HUSH complex, including Setdb1 , as hits. We found that loss of Setdb1 leads to increased immunogenicity and complete tumor clearance in a CD8+ T-cell dependent manner. Mechanistically, loss of Setdb1 causes de-repression of endogenous retroviruses (ERVs) in melanoma cells and triggers tumor-cell intrinsic type-I interferon signaling, upregulation of MHC-I expression, and increased CD8+ T-cell infiltration. Furthermore, spontaneous immune clearance observed in Setdb1 -/- tumors results in subsequent protection from other ERV-expressing tumor lines, supporting the functional anti-tumor role of ERV-specific CD8+ T-cells found in the Setdb1 -/- microenvironment. Blocking the type-I interferon receptor in mice grafted with Setdb1 -/- tumors decreases immunogenicity by decreasing MHC-I expression, leading to decreased T-cell infiltration and increased melanoma growth comparable to Setdb1 wt tumors. Together, these results indicate a critical role for Setdb1 and type-I interferons in generating an inflamed tumor microenvironment, and potentiating tumor-cell intrinsic immunogenicity in melanoma. This study further emphasizes regulators of ERV expression and type-I interferon expression as potential therapeutic targets for augmenting anti-cancer immune responses.

6.
Sci Signal ; 16(767): eabm5518, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36626580

RESUMEN

Essential functions of mitogen-activated protein kinases (MAPKs) depend on their capacity to selectively phosphorylate a limited repertoire of substrates. MAPKs harbor a conserved groove located outside of the catalytic cleft that binds to short linear sequence motifs found in substrates and regulators. However, the weak and transient nature of these "docking" interactions poses a challenge to defining MAPK interactomes and associated sequence motifs. Here, we describe a yeast-based genetic screening pipeline to evaluate large collections of MAPK docking sequences in parallel. Using this platform, we analyzed a combinatorial library based on the docking sequences from the MAPK kinases MKK6 and MKK7, defining features critical for binding to the stress-activated MAPKs JNK1 and p38α. Our screen of a library consisting of ~12,000 sequences from the human proteome revealed multiple MAPK-selective interactors, including many that did not conform to previously defined docking motifs. Analysis of p38α/JNK1 exchange mutants identified specific docking groove residues that mediate selective binding. Last, we verified that docking sequences identified in the screen functioned in substrate recruitment in vitro and in cultured cells. Together, these studies establish an approach to characterize MAPK docking sequences and provide a resource for future investigation of signaling downstream of p38 and JNK.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Proteoma , Humanos , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteoma/genética , Proteoma/metabolismo , Secuencia de Aminoácidos , Unión Proteica , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Fosforilación
7.
Nat Commun ; 13(1): 749, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136069

RESUMEN

Tousled-like kinases (TLKs) are nuclear serine-threonine kinases essential for genome maintenance and proper cell division in animals and plants. A major function of TLKs is to phosphorylate the histone chaperone proteins ASF1a and ASF1b to facilitate DNA replication-coupled nucleosome assembly, but how TLKs selectively target these critical substrates is unknown. Here, we show that TLK2 selectivity towards ASF1 substrates is achieved in two ways. First, the TLK2 catalytic domain recognizes consensus phosphorylation site motifs in the ASF1 C-terminal tail. Second, a short sequence at the TLK2 N-terminus docks onto the ASF1a globular N-terminal domain in a manner that mimics its histone H3 client. Disrupting either catalytic or non-catalytic interactions through mutagenesis hampers ASF1 phosphorylation by TLK2 and cell growth. Our results suggest that the stringent selectivity of TLKs for ASF1 is enforced by an unusual interaction mode involving mutual recognition of a short sequence motifs by both kinase and substrate.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Chaperonas Moleculares/metabolismo , Imitación Molecular , Proteínas Quinasas/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Dominio Catalítico/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/aislamiento & purificación , Proteínas de Ciclo Celular/ultraestructura , Secuencia Conservada , Cristalografía por Rayos X , Histonas/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/aislamiento & purificación , Chaperonas Moleculares/ultraestructura , Simulación del Acoplamiento Molecular , Mutagénesis , Biblioteca de Péptidos , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/aislamiento & purificación , Proteínas Quinasas/ultraestructura , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Especificidad por Sustrato
8.
Cell Rep ; 34(13): 108928, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33789117

RESUMEN

Flux through the RAF-MEK-ERK protein kinase cascade is shaped by phosphatases acting on the core components of the pathway. Despite being an established drug target and a hub for crosstalk regulation, little is known about dephosphorylation of MEK, the central kinase within the cascade. Here, we identify PPP6C, a phosphatase frequently mutated or downregulated in melanoma, as a major MEK phosphatase in cells exhibiting oncogenic ERK pathway activation. Recruitment of MEK to PPP6C occurs through an interaction with its associated regulatory subunits. Loss of PPP6C causes hyperphosphorylation of MEK at activating and crosstalk phosphorylation sites, promoting signaling through the ERK pathway and decreasing sensitivity to MEK inhibitors. Recurrent melanoma-associated PPP6C mutations cause MEK hyperphosphorylation, suggesting that they promote disease at least in part by activating the core oncogenic pathway driving melanoma. Collectively, our studies identify a key negative regulator of ERK signaling that may influence susceptibility to targeted cancer therapies.


Asunto(s)
Carcinogénesis/patología , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Línea Celular Tumoral , Células HEK293 , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Fosfoproteínas Fosfatasas/genética , Fosforilación , ARN Interferente Pequeño/metabolismo , Especificidad por Sustrato
9.
Mol Cell ; 81(2): 323-339.e11, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33321095

RESUMEN

The phosphorylation of G protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) facilitates arrestin binding and receptor desensitization. Although this process can be regulated by Ca2+-binding proteins such as calmodulin (CaM) and recoverin, the molecular mechanisms are poorly understood. Here, we report structural, computational, and biochemical analysis of a CaM complex with GRK5, revealing how CaM shapes GRK5 response to calcium. The CaM N and C domains bind independently to two helical regions at the GRK5 N and C termini to inhibit GPCR phosphorylation, though only the C domain interaction disrupts GRK5 membrane association, thereby facilitating cytoplasmic translocation. The CaM N domain strongly activates GRK5 via ordering of the amphipathic αN-helix of GRK5 and allosteric disruption of kinase-RH domain interaction for phosphorylation of cytoplasmic GRK5 substrates. These results provide a framework for understanding how two functional effects, GRK5 activation and localization, can cooperate under control of CaM for selective substrate targeting by GRK5.


Asunto(s)
Calcio/metabolismo , Calmodulina/química , Quinasa 5 del Receptor Acoplado a Proteína-G/química , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Sitios de Unión , Calmodulina/genética , Calmodulina/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Cinética , Simulación de Dinámica Molecular , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Células Sf9 , Spodoptera , Especificidad por Sustrato , Termodinámica
10.
Int J Mol Sci ; 21(17)2020 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-32842681

RESUMEN

Oxyresveratrol (OXY), a major phytochemical component derived from several plants, has been proved to have several pharmacological properties. However, the role of OXY in regulating neuroinflammation is still unclear. Here, we focused mainly on the anti-neuroinflammatory effects at the cellular level of OXY in the interleukin-1 beta (IL-1ß)-stimulated HMC3 human microglial cell line. We demonstrated that OXY strongly decreased the release of IL-6 and MCP-1 from HMC3 cells stimulated with IL-1ß. Nevertheless, IL-1ß could not induce the secretion of TNF-α and CXCL10 in this specific cell line, and that OXY did not have any effects on reducing the basal level of these cytokines in the sample culture supernatants. The densitometry analysis of immunoreactive bands from Western blot clearly indicated that IL-1ß does not trigger the nuclear factor-kappa B (NF-κB) signaling. We discovered that OXY exerted its anti-inflammatory role in IL-1ß-induced HMC3 cells by suppressing IL-1ß-induced activation of the PI3K/AKT/p70S6K pathway. Explicitly, the presence of OXY for only 4 h could strongly inhibit AKT phosphorylation. In addition, OXY had moderate effects on inhibiting the activation of ERK1/2. Results from immunofluorescence study further confirmed that OXY inhibited the phosphorylation of AKT and ERK1/2 MAPK upon IL-1ß stimulation in individual cells. These findings suggest that the possible anti-inflammatory mechanisms of OXY in IL-1ß-induced HMC3 cells are mainly through its ability to suppress the PI3K/AKT/p70S6K and ERK1/2 MAPK signal transduction cascades. In conclusion, our study provided accumulated data that OXY is able to suppress IL-1ß stimulation signaling in human microglial cells, and we believe that OXY could be a probable pharmacologic agent for altering microglial function in the treatment of neuroinflammation.


Asunto(s)
Inflamación/tratamiento farmacológico , Microglía/efectos de los fármacos , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estilbenos/farmacología , Antiinflamatorios no Esteroideos/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiocina CXCL10/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Interleucina-1beta/toxicidad , Interleucina-6/metabolismo , Microglía/metabolismo , Microglía/patología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
11.
Sci Adv ; 6(26): eaaz9861, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32637600

RESUMEN

Microbial communities are self-controlled by repertoires of lethal agents, the antibiotics. In their turn, these antibiotics are regulated by bioscavengers that are selected in the course of evolution. Kinase-mediated phosphorylation represents one of the general strategies for the emergence of antibiotic resistance. A new subfamily of AmiN-like kinases, isolated from the Siberian bear microbiome, inactivates antibiotic amicoumacin by phosphorylation. The nanomolar substrate affinity defines AmiN as a phosphotransferase with a unique catalytic efficiency proximal to the diffusion limit. Crystallographic analysis and multiscale simulations revealed a catalytically perfect mechanism providing phosphorylation exclusively in the case of a closed active site that counteracts substrate promiscuity. AmiN kinase is a member of the previously unknown subfamily representing the first evidence of a specialized phosphotransferase bioscavenger.

12.
Elife ; 82019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31407663

RESUMEN

Protein kinases are crucial to coordinate cellular decisions and therefore their activities are strictly regulated. Previously we used ancestral reconstruction to determine how CMGC group kinase specificity evolved (Howard et al., 2014). In the present study, we reconstructed ancestral kinases to study the evolution of regulation, from the inferred ancestor of CDKs and MAPKs, to modern ERKs. Kinases switched from high to low autophosphorylation activity at the transition to the inferred ancestor of ERKs 1 and 2. Two synergistic amino acid changes were sufficient to induce this change: shortening of the ß3-αC loop and mutation of the gatekeeper residue. Restoring these two mutations to their inferred ancestral state led to a loss of dependence of modern ERKs 1 and 2 on the upstream activating kinase MEK in human cells. Our results shed light on the evolutionary mechanisms that led to the tight regulation of a kinase that is central in development and disease.


Asunto(s)
Evolución Molecular , Sistema de Señalización de MAP Quinasas/genética , Sustitución de Aminoácidos , Animales , Biología Computacional , Humanos , Mutación Missense , Fosforilación , Procesamiento Proteico-Postraduccional
13.
PLoS Biol ; 17(3): e2006540, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30897078

RESUMEN

Specificity within protein kinase signaling cascades is determined by direct and indirect interactions between kinases and their substrates. While the impact of localization and recruitment on kinase-substrate targeting can be readily assessed, evaluating the relative importance of direct phosphorylation site interactions remains challenging. In this study, we examine the STE20 family of protein serine-threonine kinases to investigate basic mechanisms of substrate targeting. We used peptide arrays to define the phosphorylation site specificity for the majority of STE20 kinases and categorized them into four distinct groups. Using structure-guided mutagenesis, we identified key specificity-determining residues within the kinase catalytic cleft, including an unappreciated role for the kinase ß3-αC loop region in controlling specificity. Exchanging key residues between the STE20 kinases p21-activated kinase 4 (PAK4) and Mammalian sterile 20 kinase 4 (MST4) largely interconverted their phosphorylation site preferences. In cells, a reprogrammed PAK4 mutant, engineered to recognize MST substrates, failed to phosphorylate PAK4 substrates or to mediate remodeling of the actin cytoskeleton. In contrast, this mutant could rescue signaling through the Hippo pathway in cells lacking multiple MST kinases. These observations formally demonstrate the importance of catalytic site specificity for directing protein kinase signal transduction pathways. Our findings further suggest that phosphorylation site specificity is both necessary and sufficient to mediate distinct signaling outputs of STE20 kinases and imply broad applicability to other kinase signaling systems.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Quinasas p21 Activadas/metabolismo , Catálisis , Línea Celular , Humanos , Mutagénesis/genética , Mutagénesis/fisiología , Fosforilación/genética , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Quinasas p21 Activadas/genética
14.
J Biol Chem ; 293(47): 18353-18364, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30305396

RESUMEN

Multisite phosphorylation of proteins is a common mechanism for signal integration and amplification in eukaryotic signaling networks. Proteins are commonly phosphorylated at multiple sites in an ordered manner, whereby phosphorylation by one kinase primes the substrate by generating a recognition motif for a second kinase. Here we show that substrate priming promotes phosphorylation by Saccharomyces cerevisiae Kin1 and Kin2, kinases that regulate cell polarity, exocytosis, and the endoplasmic reticulum (ER) stress response. Kin1/Kin2 phosphorylated substrates within the context of a sequence motif distinct from those of their most closely related kinases. In particular, the rate of phosphorylation of a peptide substrate by Kin1/Kin2 increased >30-fold with incorporation of a phosphoserine residue two residues downstream of the phosphorylation site. Recognition of phosphorylated substrates by Kin1/Kin2 was mediated by a patch of basic residues located in the region of the kinase αC helix. We identified a set of candidate Kin1/Kin2 substrates reported to be dually phosphorylated at sites conforming to the Kin1/Kin2 consensus sequence. One of these proteins, the t-SNARE protein Sec9, was confirmed to be a Kin1/Kin2 substrate both in vitro and in vivo Sec9 phosphorylation by Kin1 in vitro was enhanced by prior phosphorylation at the +2 position. Recognition of primed substrates was not required for the ability of Kin2 to suppress the growth defect of secretory pathway mutants but was necessary for optimal growth under conditions of ER stress. These results suggest that at least some endogenous protein substrates of Kin1/Kin2 are phosphorylated in a priming-dependent manner.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencias de Aminoácidos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Péptidos/química , Péptidos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Qc-SNARE/genética , Proteínas Qc-SNARE/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato
15.
Biochemistry ; 57(31): 4717-4725, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29920078

RESUMEN

The human proteome encodes >500 protein kinases and hundreds of thousands of potential phosphorylation sites. However, the identification of kinase-substrate pairs remains an active area of research because the relationships between individual kinases and these phosphorylation sites remain largely unknown. Many techniques have been established to discover kinase substrates but are often technically challenging to perform. Moreover, these methods frequently rely on substrate reagent pools that do not reflect human protein sequences or are biased by human cell line protein expression profiles. Here, we describe a new approach called SERIOHL-KILR (serine-oriented human library-kinase library reactions) to profile kinase substrate specificity and to identify candidate substrates for serine kinases. Using a purified library of >100000 serine-oriented human peptides expressed heterologously in Escherichia coli, we perform in vitro kinase reactions to identify phosphorylated human peptide sequences by liquid chromatography and tandem mass spectrometry. We compare our results for protein kinase A to those of a well-established positional scanning peptide library method, certifying that SERIOHL-KILR can identify the same predominant motif elements as traditional techniques. We then interrogate a small panel of cancer-associated PKCß mutants using our profiling protocol and observe a shift in substrate specificity likely attributable to the loss of key polar contacts between the kinase and its substrates. Overall, we demonstrate that SERIOHL-KILR can rapidly identify candidate kinase substrates that can be directly mapped to human sequences for pathway analysis. Because this technique can be adapted for various kinase studies, we believe that SERIOHL-KILR will have many new victims in the future.


Asunto(s)
Biblioteca de Péptidos , Proteínas Quinasas/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Cromatografía Liquida , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Especificidad por Sustrato , Espectrometría de Masas en Tándem
16.
Biochemistry ; 57(12): 1847-1851, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29528224

RESUMEN

A majority of the 90 human protein tyrosine kinases (PTKs) are understudied "orphan" enzymes with few or no known substrates. Designing experiments aimed at assaying the catalytic activity of these PTKs has been a long-running problem. In the past, researchers have used polypeptides with a randomized 4:1 molar ratio of glutamic acid to tyrosine as general PTK substrates. However, these substrates are inefficient and perform poorly for many applications. In this work, we apply the KINATEST-ID pipeline for artificial kinase substrate discovery to design a set of candidate "universal" PTK peptide substrate sequences. We identified two unique peptide sequences from this set that had robust activity with a panel of 15 PTKs tested in an initial screen. Kinetic characterization with seven receptor and nonreceptor PTKs confirmed these peptides to be efficient and general PTK substrates. The broad scope of these artificial substrates demonstrates that they should be useful as tools for probing understudied PTK activity.


Asunto(s)
Péptidos/química , Proteínas Tirosina Quinasas/química , Humanos , Especificidad por Sustrato
17.
Elife ; 72018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29480805

RESUMEN

The Drosophila Pan Gu (PNG) kinase complex regulates hundreds of maternal mRNAs that become translationally repressed or activated as the oocyte transitions to an embryo. In a previous paper (Hara et al., 2017), we demonstrated PNG activity is under tight developmental control and restricted to this transition. Here, examination of PNG specificity showed it to be a Thr-kinase yet lacking a clear phosphorylation site consensus sequence. An unbiased biochemical screen for PNG substrates identified the conserved translational repressor Trailer Hitch (TRAL). Phosphomimetic mutation of the PNG phospho-sites in TRAL reduced its ability to inhibit translation in vitro. In vivo, mutation of tral dominantly suppressed png mutants and restored Cyclin B protein levels. The repressor Pumilio (PUM) has the same relationship with PNG, and we also show that PUM is a PNG substrate. Furthermore, PNG can phosphorylate BICC and ME31B, repressors that bind TRAL in cytoplasmic RNPs. Therefore, PNG likely promotes translation at the oocyte-to-embryo transition by phosphorylating and inactivating translational repressors.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Drosophila/enzimología , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Ribonucleoproteínas/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Fosforilación , Mapeo de Interacción de Proteínas
18.
Sci Rep ; 7(1): 887, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28428613

RESUMEN

Protein kinases are essential molecules in life and their crucial function requires tight regulation. Many kinases are regulated via phosphorylation within their activation loop. This loop is embedded in the activation segment, which additionally contains the Mg2+ binding loop and a P + 1 loop that is important in substrate binding. In this report, we identify Abl-mediated phosphorylation of a highly conserved Tyr residue in the P + 1 loop of protein kinase D2 (PKD2) during oxidative stress. Remarkably, we observed that the three human PKD isoforms display very different degrees of P + 1 loop Tyr phosphorylation and we identify one of the molecular determinants for this divergence. This is paralleled by a different activation mechanism of PKD1 and PKD2 during oxidative stress. Tyr phosphorylation in the P + 1 loop of PKD2 increases turnover for Syntide-2, while substrate specificity and the role of PKD2 in NF-κB signaling remain unaffected. Importantly, Tyr to Phe substitution renders the kinase inactive, jeopardizing its use as a non-phosphorylatable mutant. Since large-scale proteomics studies identified P + 1 loop Tyr phosphorylation in more than 70 Ser/Thr kinases in multiple conditions, our results do not only demonstrate differential regulation/function of PKD isoforms under oxidative stress, but also have implications for kinase regulation in general.


Asunto(s)
Estrés Oxidativo , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia Conservada , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , FN-kappa B/metabolismo , Péptidos/metabolismo , Fosforilación , Dominios Proteicos , Proteína Quinasa C/química , Proteína Quinasa C/genética , Tirosina/genética , Tirosina/metabolismo
19.
ACS Chem Biol ; 12(5): 1194-1198, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28314095

RESUMEN

Eukaryotic protein kinases typically phosphorylate substrates in the context of specific sequence motifs, contributing to specificity essential for accurate signal transmission. Protein kinases recognize their target sequences through complementary interactions within the active site cleft. As a step toward the construction of orthogonal kinase signaling systems, we have re-engineered the protein kinase Pim1 to alter its phosphorylation consensus sequence. Residues in the Pim1 catalytic domain interacting directly with a critical arginine residue in the substrate were substituted to produce a kinase mutant that instead accommodates a hydrophobic residue. We then introduced a compensating mutation into a Pim1 substrate, the pro-apoptotic protein BAD, to reconstitute phosphorylation both in vitro and in living cells. Coexpression of the redesigned kinase with its substrate in cells protected them from apoptosis. Such orthogonal kinase-substrate pairs provide tools to probe the functional consequences of specific phosphorylation events in living cells and to design synthetic signaling pathways.


Asunto(s)
Dominio Catalítico/genética , Ingeniería de Proteínas/métodos , Proteínas Quinasas/genética , Proteínas Proto-Oncogénicas c-pim-1/genética , Apoptosis/genética , Células HEK293 , Humanos , Mutación Missense , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Especificidad por Sustrato/genética , Proteína Letal Asociada a bcl/genética , Proteína Letal Asociada a bcl/metabolismo
20.
Mol Cell Biol ; 37(10)2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28223369

RESUMEN

Smk1 is a meiosis-specific mitogen-activated protein kinase (MAPK) in Saccharomyces cerevisiae that couples spore morphogenesis to the completion of chromosome segregation. Similar to other MAPKs, Smk1 is controlled by phosphorylation of a threonine (T) and a tyrosine (Y) in its activation loop. However, it is not activated by a dual-specificity MAPK kinase. Instead, T207 in Smk1's activation loop is phosphorylated by the cyclin-dependent kinase (CDK)-activating kinase (Cak1), and Y209 is autophosphorylated in an intramolecular reaction that requires the meiosis-specific protein Ssp2. In this study, we show that Smk1 is catalytically inert unless it is bound by Ssp2. While Ssp2 binding activates Smk1 by a mechanism that is independent of activation loop phosphorylation, binding also triggers autophosphorylation of Y209 in Smk1, which, along with Cak1-mediated phosphorylation of T207, further activates the kinase. Autophosphorylation of Smk1 on Y209 also appears to modify the specificity of the MAPK by suppressing Y kinase and enhancing S/T kinase activity. We also found that the phosphoconsensus motif preference of Ssp2/Smk1 is more extensive than that of other characterized MAPKs. This study therefore defines a novel mechanism of MAPK activation requiring binding of an activator and also shows that MAPKs can be diversified to recognize unique phosphorylation motifs.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Tirosina/metabolismo , Activación Enzimática , Fosforilación , Saccharomyces cerevisiae/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...