Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem ; 459: 140327, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38986199

RESUMEN

Sturgeon has a long lifespan and slow evolutionary rate due to their powerful endogenous antioxidant system. This work aimed to assess the in vitro and in vivo antioxidant activity of sturgeon extracts from both muscle and roe. The extraction process without enzyme hydrolysis is not only simple, but also can produce extracts with better free radicals scavenging abilities than enzymatic hydrolysates in both cellular and in vivo experiments. Moreover, in mouse models with liver injury and immunosuppression treatment, the sturgeon extracts demonstrated strong hepatoprotective and immune-enhancing functions, comparable to vitamin C and ginseng extract supplements, which were attributed to abundant antioxidant peptides of the extracts. The 15 isolated peptides exhibited diverse free radical scavenging ability. Therefore, the sturgeon extracts showed high potential to be applied in food and biomedical industries.

2.
Int J Biol Macromol ; 274(Pt 2): 133242, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897496

RESUMEN

In response to the environmental pollution caused by non-degradable and non-recyclable plastic packaging films (PPFs) and the resulting health concerns due to the migration of microplastics into food, the development of biodegradable food packaging films has gained great attention. Chitosan has been extensively utilized in the food industry owing to its abundant availability, exceptional biocompatibility, degradability, and antimicrobial properties. Chitosan-essential oil composite films (CEOs) represent a promising avenue to replace conventional PPFs. This review provides an overview of the advancements in CEOs over the past decade, focusing on the effects of essential oils (EOs) on CEOs in terms of antimicrobial activity, antioxidant effect, gas barrier, light barrier, and mechanical properties. It also offers insights into the controlled release of EOs in CEOs and summarizes the application of CEOs in fresh food preservation.


Asunto(s)
Quitosano , Embalaje de Alimentos , Conservación de Alimentos , Aceites Volátiles , Quitosano/química , Quitosano/farmacología , Embalaje de Alimentos/métodos , Aceites Volátiles/química , Aceites Volátiles/farmacología , Conservación de Alimentos/métodos , Antioxidantes/farmacología , Antioxidantes/química , Antiinfecciosos/farmacología , Antiinfecciosos/química
3.
Int J Biol Macromol ; 264(Pt 1): 130556, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431014

RESUMEN

The aim of this study was to investigate the effects of acetylation modification on the structural, interfacial and emulsifying properties of Millettia speciosa Champ polysaccharide (MSCP). Besides, the influence of acetylation modification on the encapsulation properties of polysaccharide-based emulsion was also explored. Results indicated that modification resulted in a prominent reduction in molecular weight of MSCP and the interfacial layer thickness formed by acetylated MSCP (AC-MSCP) was also decreased, but the adsorption rate and ability of AC-MSCP to reduce interfacial tension were improved. AC-MSCP formulated emulsion possessed smaller droplet size (6.8 µm) and exhibited better physical stability under stressful conditions. The chemical stability of ß-carotene was also profoundly enhanced by AC-MSCP fabricated emulsion. Moreover, AC-MSCP improved lipids digestion extent, thus facilitating the formation of micelle and increasing bioaccessibility of ß-carotene. This study provided insights for rational modification of polysaccharide-based emulsifier and designing delivery system for chemically labile hydrophobic bioactive components.


Asunto(s)
Millettia , beta Caroteno , Emulsiones/química , beta Caroteno/química , Polisacáridos/química , Emulsionantes/química
4.
J Agric Food Chem ; 72(9): 4880-4887, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38386432

RESUMEN

Dihydroquercetin (DHQ), known for its varied physiological benefits, is widely used in the food, chemical, and pharmaceutical industries. However, the efficiency of the DHQ synthesis is significantly limited by the substantial accumulation of intermediates during DHQ biosynthesis. In this study, DHQ production was achieved by integrating genes from various organisms into the yeast chromosome for the expression of flavanone-3-hydroxylase (F3H), flavonoid-3'-hydroxylase, and cytochrome P450 reductase. A computer-aided protein design approach led to the development of optimal F3H mutant P221A, resulting in a 1.67-fold increase in DHQ yield from naringenin (NAR) compared with the control. Subsequently, by analysis of the enzyme reaction and optimization of the culture medium composition, 637.29 ± 20.35 mg/L DHQ was synthesized from 800 mg/L NAR. This corresponds to a remarkable conversion rate of 71.26%, one of the highest reported values for DHQ synthesis from NAR to date.


Asunto(s)
Flavanonas , Quercetina/análogos & derivados , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Flavanonas/metabolismo , Quercetina/química
5.
J Agric Food Chem ; 72(8): 4155-4169, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38366990

RESUMEN

In this study, we used traditional laboratory methods, bioinformatics, and cellular models to screen novel ACE inhibitory (ACEI) peptides with strong ACEI activity, moderate absorption rates, and multiple targets from bovine colostrum immunoglobulin G (IgG). The purified fraction of the compound proteinase hydrolysate of IgG showed good ACEI activity. After nano-UPLC-MS/MS identification and in silico analysis, eight peptides were synthesized and verified. Among them, SFYPDY, TSFYPDY, FSWF, WYQQVPGSGL, and GVHTFP were identified as ACEI peptides, as they exhibited strong ACEI activity (with IC50 values of 104.7, 80.0, 121.2, 39.8, and 86.3 µM, respectively). They displayed good stability in an in vitro simulated gastrointestinal digestion assay. In a Caco-2 monolayer model, SFYPDY, FSWF, and WYQQVPGSGL exhibited better absorption rates and lower IC50 values than the other peptides and were thereby identified as novel ACEI peptides. Subsequently, in a H2O2-induced endothelial dysfunction (ED) model based on HUVECs, SFYPDY, FSWF, and WYQQVPGSGL regulated ED by reducing apoptosis and ROS accumulation while upregulating NOS3 mRNA expression. Network pharmacology analysis and RT-qPCR confirmed that they regulated multiple targets. Overall, our results suggest that SFYPDY, FSWF, and WYQQVPGSGL can serve as novel multitarget ACEI peptides.


Asunto(s)
Inmunoglobulina G , Enfermedades Vasculares , Humanos , Femenino , Embarazo , Animales , Bovinos , Farmacología en Red , Espectrometría de Masas en Tándem , Células CACO-2 , Calostro/metabolismo , Peróxido de Hidrógeno , Péptidos/química , Peptidil-Dipeptidasa A/química , Hidrolisados de Proteína/química , Simulación del Acoplamiento Molecular
6.
Nanoscale ; 15(48): 19493-19498, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38051109

RESUMEN

An iron-incorporated Zn-MOF catalyst Zn-bpydc·Fe was fabricated for the oxidative cleavage of trans-anethole to p-anisaldehyde under facile conditions, under 1 atm of O2. The Fe coordinated bipyridine serves as the catalytically active center inside the structural skeleton of Zn-MOFs. This work affords a new avenue for the mild oxidation of olefins.

7.
Nat Commun ; 14(1): 5974, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749093

RESUMEN

Enzymes achieve high catalytic activity with their elaborate arrangements of amino acid residues in confined optimized spaces. Nevertheless, when exposed to complicated environmental implementation scenarios, including high acidity, organic solvent and high ionic strength, enzymes exhibit low operational stability and poor activity. Here, we report a metal-organic frameworks (MOFs)-based artificial enzyme system via second coordination sphere engineering to achieve high hydrolytic activity under mild conditions. Experiments and theoretical calculations reveal that amide cleavage catalyzed by MOFs follows two distinct catalytic mechanisms, Lewis acid- and hydrogen bonding-mediated hydrolytic processes. The hydrogen bond formed in the secondary coordination sphere exhibits 11-fold higher hydrolytic activity than the Lewis acidic zinc ions. The MOFs exhibit satisfactory degradation performance of toxins and high stability under extreme working conditions, including complicated fermentation broth and high ethanol environments, and display broad substrate specificity. These findings hold great promise for designing artificial enzymes for environmental remediation.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37594649

RESUMEN

The modulation of whole-cell activity presents a considerable challenge in biocatalysis. Conventional approaches to whole-cell catalysis, while having their strengths, often rely on complex and deliberate enzyme designs, which could result in difficulties in activity modulation and prolonged response times. Additionally, the activity of intracellular enzymes in whole-cell catalysis is influenced by temperature. To address these limitations, we introduced a relationally designed nanobiohybrid system that utilized light to modulate whole-cell catalysis for chiral alcohol production. By incorporating platinum nanoparticles onto Rhodotorula sp. cell surfaces, the nanobiohybrid capitalized on the photothermal properties of the nanoparticles to regulate the overall cell activity. When exposed to light, the Pt nanoparticles generate heat through the photothermal effect, consequently leading to an increase in the catalytic activity of the whole cells. This innovative approach facilitates control over whole-cell production and provides an efficient method for regulating biocatalytic processes. The findings of this study demonstrate the significant potential of switchable control strategies in biomanufacturing across a wide range of industries.

9.
Biotechnol Biofuels Bioprod ; 16(1): 126, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550714

RESUMEN

BACKGROUND: Xylo-oligomers are a kind of high value-added products in biomass fractionation. Although there are several chemical methods to obtain xylo-oligomers from biomass, the reports about the deep eutectic solvents (DESs)-mediated co-production of xylo-oligomers and fermentable sugars and the related kinetic mechanism are limited. RESULTS: In this work, glycolic acid-based DESs were used to obtain xylo-oligomers from corncob. The highest xylo-oligomers yield of 65.9% was achieved at 120 °C for 20 min, of which the functional xylo-oligosaccharides (XOSs, DP 2-5) accounted for up to 31.8%. Meanwhile, the enzymatic digestion of cellulose and xylan in residues reached 81.0% and 95.5%, respectively. Moreover, the addition of metal inorganic salts significantly accelerated the hydrolysis of xylan and even the degradation of xylo-oligomers in DES, thus resulting in higher selectivity of xylan removal. AlCl3 showed the strongest synergistic effect with DES on accelerating the processes, while FeCl2 is best one for xylo-oligomers accumulation, affording the highest xylo-oligomers yield of 66.1% for only 10 min. Furthermore, the kinetic study indicates that the 'potential hydrolysis degree' model could well describe the xylan hydrolysis processes and glycolic acid/lactic acid (3:1) is a promising solvent for xylo-oligomers production, in particular, it worked well with FeCl2 for the excellent accumulation of xylo-oligomers. CONCLUSIONS: Glycolic acid-based deep eutectic solvents can be successfully applied in corncob fractionation with excellent xylo-oligomers and fermentable sugars yields on mild conditions, and the large amount of xylo-oligosaccharides accumulation could be achieved by specific process controlling. The strategies established here can be useful for developing high-valued products from biomass.

10.
Microbiome ; 11(1): 153, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468996

RESUMEN

BACKGROUND: Lactobacillus species in gut microbiota shows great promise in alleviation of metabolic diseases. However, little is known about the molecular mechanism of how Lactobacillus interacts with metabolites in circulation. Here, using high nucleoside intake to induce hyperuricemia in mice, we investigated the improvement in systemic urate metabolism by oral administration of L. plantarum via different host pathways. RESULTS: Gene expression analysis demonstrated that L. plantarum inhibited the activity of xanthine oxidase and purine nucleoside phosphorylase in liver to suppress urate synthesis. The gut microbiota composition did not dramatically change by oral administration of L. plantarum over 14 days, indicated by no significant difference in α and ß diversities. However, multi-omic network analysis revealed that increase of L. plantarum and decrease of L. johnsonii contributed to a decrease in serum urate levels. Besides, genomic analysis and recombinant protein expression showed that three ribonucleoside hydrolases, RihA-C, in L. plantarum rapidly and cooperatively catalyzed the hydrolysis of nucleosides into nucleobases. Furthermore, the absorption of nucleobase by intestinal epithelial cells was less than that of nucleoside, which resulted in a reduction of urate generation, evidenced by the phenomenon that mice fed with nucleobase diet generated less serum urate than those fed with nucleoside diet over a period of 9-day gavage. CONCLUSION: Collectively, our work provides substantial evidence identifying the specific role of L. plantarum in improvement of urate circulation. We highlight the importance of the enzymes RihA-C existing in L. plantarum for the urate metabolism in hyperuricemia mice induced by a high-nucleoside diet. Although the direct connection between nucleobase transport and host urate levels has not been identified, the lack of nucleobase transporter in intestinal epithelial cells might be important to decrease its absorption and metabolization for urate production, leading to the decrease of serum urate in host. These findings provide important insights into urate metabolism regulation. Video Abstract.


Asunto(s)
Hiperuricemia , Probióticos , Ratones , Animales , Nucleósidos , Ácido Úrico , Intestinos , Dieta
11.
Carbohydr Polym ; 316: 121034, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37321729

RESUMEN

We report for the first time the usage of Millettia speciosa Champ cellulose (MSCC) and carboxymethylcellulose (MSCCMC) for the fabrication of 3D-network hydrogel as delivery system for probiotics. The structural features, swelling behavior and pH-responsiveness of MSCC-MSCCMC hydrogels and their encapsulation and controlled-release behavior for Lactobacillus paracasei BY2 (L. paracasei BY2) were mainly studied. Structural analyses demonstrated that MSCC-MSCCMC hydrogels with porous and network structures were successfully synthesized through the crosslinking of -OH groups between MSCC and MSCCMC molecules. An increasing concentration of MSCCMC significantly improved the pH-responsiveness and swelling ability of the MSCC-MSCCMC hydrogel toward neutral solvent. Besides, the encapsulation efficiency (50.38-88.91 %) and release (42.88-92.86 %) of L. paracasei BY2 were positively correlated with the concentration of MSCCMC. The higher the encapsulation efficiency was, the higher the release in the target intestine. However, due to the existence of bile salts, controlled-release behavior decreased the survivor rate and physiological state (degrading cholesterol) of encapsulating L. paracasei BY2. Even so, the number of viable cells encapsulated by hydrogels still reached the minimum effective concentration in the target intestine. This study provides an available reference for the practical application of hydrogels fabricated from the cellulose of the Millettia speciosa Champ plant for probiotic delivery.


Asunto(s)
Lacticaseibacillus paracasei , Millettia , Celulosa/química , Preparaciones de Acción Retardada , Millettia/química , Hidrogeles/química , Concentración de Iones de Hidrógeno
12.
Bioresour Technol ; 383: 129240, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37247794

RESUMEN

Improving the activity of ß-xylosidase at high temperature and organic solvents is important for the conversion of xylan, phytochemicals and some hydroxyl-containing substances to produce xylose and bioactive substances. In this study, a ß-xylosidase R333H and an endoxylanase were simultaneously co-immobilized on the metal-organic framework UiO-66-NH2. Compared with the single R333H immobilization system, the co-immobilization enhanced the activity of R333H at high temperature and high concentration of acetone, and the relative activities at 95 °C and 50% acetone solution were >95%. The Km value of co-immobilized R333H towards p-Nitrophenyl-ß-D-xylopyranoside (pNPX) shifted from 2.04 to 0.94 mM, which indicated the enhanced affinity towards pNPX. After 5 cycles, the relative activities of the co-immobilized enzymes towards pNPX and corncob xylan were 52% and 70% respectively, and the accumulated amount of reducing sugars obtained by co-immobilized enzymes degrading corncob xylan in 30% (v/v) acetone solution was 1.7 times than that with no acetone.


Asunto(s)
Estructuras Metalorgánicas , Xilosidasas , Endo-1,4-beta Xilanasas , Circonio , Temperatura , Xilanos , Acetona , Enzimas Inmovilizadas , Concentración de Iones de Hidrógeno , Xilosidasas/química
13.
Environ Res ; 226: 115633, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36931373

RESUMEN

The accumulated antibiotics in the aquatic environment pose great threat to human and ecological health, boosting the development of porous materials for antibiotic removal. Mesoporous metal-organic frameworks (MOFs) have shown great promise in adsorption, which, however, usually need supramolecular design or cooperative template strategy for synthesis. Here we report the successful construction of mesoporous zirconium based metal-organic frameworks (Zr-MOFs) via a simple solvent-dependent strategy. Regulation of the ratio of water to N, N-dimethylacetamide during synthesis determined the porous structure of the synthesized MOFs. Systematic characterizations including SEM, FTIR, XRD and nitrogen sorption isotherm were carried out for structure analysis of the MOFs. With water fraction of 20% (v/v), the obtained Zr-MOF exhibited the highest adsorption capacity (Qmax of 337.0 mg⋅g-1) towards tetracycline (TC). The adsorption kinetics fitted the pseudo-second-order kinetics, and the adsorption isotherms fitted the Freundlich model well. Adsorption mechanism investigation revealed that the abundant Zr-OH groups stemming from coordination defects mainly accounted for TC adsorption. The hydrogen bonding interaction between TC and Zr-MOF and the generated mesopores contributed to the satisfactory adsorption capacity. This work is anticipated to provide insights on facile synthesis of mesoporous MOFs and application in environmental remediation.


Asunto(s)
Estructuras Metalorgánicas , Humanos , Solventes , Adsorción , Antibacterianos/química , Tetraciclina , Agua
14.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36982937

RESUMEN

In the study, monodispersed silver nanoparticles (AgNPs) with an average diameter of 9.57 nm were efficiently and controllably biosynthesized by a reductase from Fusarium solani DO7 only in the presence of ß-NADPH and polyvinyl pyrrolidone (PVP). The reductase responsible for AgNP formation in F. solani DO7 was further confirmed as 1,4-α-glucosidase. Meanwhile, based on the debate on the antibacterial mechanism of AgNPs, this study elucidated in further depth that antibacterial action of AgNPs was achieved by absorbing to the cell membrane and destabilizing the membrane, leading to cell death. Moreover, AgNPs could accelerate the catalytic reaction of 4-nitroaniline, and 86.9% of 4-nitroaniline was converted to p-phenylene diamine in only 20 min by AgNPs of controllable size and morphology. Our study highlights a simple, green, and cost-effective process for biosynthesizing AgNPs with uniform sizes and excellent antibacterial activity and catalytic reduction of 4-nitroaniline.


Asunto(s)
Fusarium , Nanopartículas del Metal , Plata/metabolismo , alfa-Glucosidasas , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Fusarium/metabolismo
15.
Biomass Convers Biorefin ; : 1-15, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36785542

RESUMEN

A deep eutectic solvent (choline chloride (ChCl)-urea) was chosen to extract flavonoids from Moringa oleifera leaves (FMOL), the condition of extraction was tailor-made, under the optimal extraction conditions (material-to-liquid ratio of 1:60 g/mL, extraction time of 80 min, extraction temperature of 80 °C), the highest extraction efficiency reached 63.2 ± 0.3 mg R/g DW, and nine flavonoids were identified. Then, the biological activities including antioxidant activities, antibacterial activities, and anti-tumor activities were systematically studied. FMOL was superior to positive drugs in terms of antioxidant activity. As to DPPH investigation, the IC50 of FMOL and Vc were 64.1 ± 0.7 and 176.1 ± 2.0 µg/mL; for the ABTS, the IC50 of FMOL and Vc were 9.5 ± 0.3 and 38.2 ± 1.2 µg/mL, the FRAP value of FMOL and Vc were 15.5 ± 0.6 and 10.2 ± 0.4 mg TE/g, and ORAC value of FMOL and Vc were 4687.2 ± 102.8 and 3881.6 ± 98.6 µmol TE/g. The bacteriostatic (MICs were ≤ 1.25 mg/mL) activities of FMOL were much better than propyl p-hydroxybenzoate. Meanwhile, FMOL had comparable inhibitory activity with genistein on tumor cells, IC50 was 307.8 µg/mL, and could effectively induce apoptosis in HCT116. Microcapsules were prepared with xylose-modified soybean protein isolate and gelatin as wall materials; after that, the intestinal release of modified FMOL microcapsules was 86 times of free FMOL. Therefore, this study confirmed that FMOL extracted with ChCl/urea has rich bioactive components, and microencapsulated FMOL has potential application in food industry. Supplementary Information: The online version contains supplementary material available at 10.1007/s13399-023-03877-8.

16.
J Biotechnol ; 362: 54-62, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36592666

RESUMEN

An acid polysaccharide, named HP, was produced by endophytic Penicillium javanicum MSC-R1 isolated from southern medicine Millettia speciosa Champ. The molecular weight of HP was 37.8 kDa and consisted of Ara f, Galр, Glcр, Manр, and GlcрA with a molar ratio of 1.09: 3.47: 68.48: 16.59: 8.85. The glycosidic linkage of HP was proven to be →3, 4)-α-D-Glcр-(1→6)-α-D-Manр-(1→, →3, 4)-α-D-Glcр-(1→4)-α-D-Glcр-(1→, →3), →6)-α-D-Manр-(1→4)-α-D-Glcр-(1→, →3), ß-D-Galр-(1→3)-α-D-Glcр-(1→, →4), →5)-α-L-Ara f -(1→3)-α-D-Glcр-(1→, →4), →6)-α-D-Manр-(1→4)-α-D-GlcAр-(1→ and →4)-α-D-GlcAр-(1→4)-α-D-Glcр-(1→, →3). Additionally, 250 µg/mL of HP possessed nontoxicity to RAW 264.7 cells and exhibited anti-inflammation activity. HP could significantly restrain the amount of tumor necrosis factor-α, interleukin-6 and NO release in RAW264.7, which property is possibly associated with its abundant glucosidic linkage. These results indicated that HP could be regarded as a ponderable ingredient for the health-beneficial functional foods.


Asunto(s)
Millettia , Penicillium , Animales , Ratones , Millettia/química , Polisacáridos/química , Penicillium/química , Células RAW 264.7
17.
Nat Prod Res ; 37(1): 31-38, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34212817

RESUMEN

Natural plant-derived protein with excellent bioactivities has attracted much attention so a functional protein with molecular weight of 15.2 kDa was extracted from Millettia speciosa Champ. leaf for the first time. Under the pH of 12.0, solid-liquid ratio of 1:40 (w/v), extraction time of 2.0 h, and extraction temperature of 50 °C, the highest extracting efficiency (79.25 ± 0.78%) of the Millettia speciosa Champ. leaf protein (MLP) was achieved. The main structure of MLP contained ß-fold and ß-corner by Fourier transform infrared spectroscopy (FTIR) and Circular dichroism (CD) spectra analysis. Additionally, MLP was predominant with glutamic acid, aspartic acid, and leucine, which could be considered as a high quality natural protein. MLP showed great water holding capacity (WHC), oil absorption capacity (OAC), as well as emulsifying and foaming properties. Simultaneously, MLP exhibited considerable antioxidant activity. These results suggested that MLP could be utilised as a promising ingredient of functional foods.


Asunto(s)
Millettia , Millettia/química , Antioxidantes/química , Proteínas de Plantas/análisis , Ácido Aspártico , Hojas de la Planta/química
18.
Artículo en Inglés | MEDLINE | ID: mdl-36525182

RESUMEN

In this study, five strains of lactic acid bacteria (LAB) with excellent cholesterol-lowering ability were screened from fermented foods. The gastrointestinal stress resistance, intestinal adhesion, and bacteriostasis abilities were evaluated to obtain the best LAB. And then, high-cholesterol HepG2 cell model was further prepared to explore the cholesterol-lowering mechanism of the LAB. Finally, pH-sensitive hydrogel prepared by Millettia speciosa Champ. carboxymethyl cellulose and Millettia speciosa Champ. cellulose was first applied to the microencapsulation of LAB. As a result, Lactobacillus paracasei BY2 (LP-BY2) exhibited higher cholesterol-lowering activity, intestinal adhesion, and bacteriostasis abilities compared with other LAB. Furthermore, it was found that LP-BY2 could reduce the cholesterol level by regulating the expression of key genes that involved in cholesterol synthesis (HMGCR and SREBP-2), uptake (LDLR), and outflow (LXR-α, ABCA1, ABCG5, ABCG8, and CYP7A1) in liver. At the same time, microencapsulation significantly enhanced the survival rate and cholesterol-lowering ability of LP-BY2 after gastrointestinal digestion. This study will provide an available reference for the application of Lactobacillus in prevention and treatment of hypercholesterolemia.

19.
Int J Biol Macromol ; 219: 804-811, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-35926674

RESUMEN

Ammonia lyases have great application potential in food and pharmaceuticals owing to their unique ammonia addition reaction and atom economy. A novel methylaspartate ammonia-lyase, EcMAL, from E. coli O157:H7 showed high catalytic activity. To further strengthen its thermostability and activity, disulfide bond and backbone cyclization (cyclase) variants were constructed by rational design, respectively. Among them, variant M3, with a disulfide bond introduced, exhibited a 2.3-fold increase in half-life at 50 °C, while cyclase variant M8 showed better performance, with 25.9-fold increases. The synergistic promotion effect of this combinational strategy on activity and stability was also investigated, and the combined mutant M9 exhibited a 1.1-fold improvement in catalytic efficiency while maintaining good thermostability. Circular dichroism analysis and molecular dynamics simulation confirmed that the main sources of improved thermostability were reduced atomic fluctuation and a more stable secondary structure. To our knowledge, this is the first example of combining the introduction of disulfide bonds with cyclase construction to improve enzyme stability, which was characterized by modification away from the enzyme active center, and provided a new method for adjusting enzyme thermostability.


Asunto(s)
Amoníaco-Liasas , Escherichia coli , Amoníaco , Ciclización , Disulfuros/química , Estabilidad de Enzimas , Preparaciones Farmacéuticas , Temperatura
20.
Food Chem ; 397: 133764, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35905621

RESUMEN

In this study, a natural antioxidant emulsifier, Millettia speciosa Champ polysaccharide conjugates (MSC-PC), was used for fabricating oil-in-water emulsion, and the influences of MSC-PC on ß-carotene stability and bioaccessibility were studied. Results suggested that MSC-PC stabilized emulsion exhibited excellent resistance to a wide range of salt levels (0-500 mM of Na+), thermal treatments (50-90 °C) and pH values (3.0-11.0). MSC-PC also exhibited an outstanding inhibition capacity on lipid oxidation. Besides, MSC-PC stabilized emulsion had a better protective effect on ß-carotene than other systems. Interestingly, in spite of similar lipolysis extent, ß-carotene bioaccessibility in MSC-PC fabricated emulsion (14.75 %) was markedly higher than that in commercial Tween 80 fabricated emulsion (10.08 %), likely due to the steric-hindrance effect and antioxidant ability of MSC-PC, building interfacial layers that prevented ß-carotene from degradation. This work supplied a deep insight into elucidating the mechanisms of emulsifying performance and ß-carotene protection effect of MSC-PC fabricated emulsion.


Asunto(s)
Millettia , beta Caroteno , Antioxidantes , Digestión , Emulsiones/metabolismo , Millettia/metabolismo , Polisacáridos , Agua , beta Caroteno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA