RESUMEN
Crocodilians are a taxonomic group of large predators with important ecological and evolutionary benefits for ecosystem functioning in the face of global change. Anthropogenic actions affect negatively crocodilians' survival and more than half of the species are threatened with extinction worldwide. Here, we map and explore three dimensions of crocodilian diversity on a global scale. To highlight the ecological importance of crocodilians, we correlate the spatial distribution of species with the ecosystem services of nutrient retention in the world. We calculate the effectiveness of global protected networks in safeguarding crocodilian species and provide three prioritization models for conservation planning. Our results show the main hotspots of ecological and evolutionary values are in southern North, Central and South America, west-central Africa, northeastern India, and southeastern Asia. African species have the highest correlation to nutrient retention patterns. Twenty-five percent of the world's crocodilian species are not significantly represented in the existing protected area networks. The most alarming cases are reported in northeastern India, eastern China, and west-central Africa, which include threatened species with low or non-significant representation in the protected area networks. Our highest conservation prioritization model targets southern North America, east-central Central America, northern South America, west-central Africa, northeastern India, eastern China, southern Laos, Cambodia, and some points in southeastern Asia. Our research provides a global prioritization scheme to protect multiple dimensions of crocodilian diversity for achieving effective conservation outcomes.
Asunto(s)
Caimanes y Cocodrilos , Animales , Ecosistema , Conservación de los Recursos Naturales , América del Sur , África OccidentalRESUMEN
Species distribution patterns are widely used to guide conservation planning and are a central issue in ecology. The usefulness of spatial correlation analysis has been highlighted in several ecological applications so far. However, spatial assumptions in ecology are highly scale-dependent, in which geographical relationships between species diversity and distributions can have different conservation concerns. Here, an integrative landscape planning was designed to show the spatial distribution patterns of taxonomic and functional diversity of amphibians and fishes, from multiple species traits regarding morphology, life history, and behavior. We used spatial, morphological, and ecological data of amphibians and fishes to calculate the functional diversity and the spatial correlation of species. Mapping results show that the higher taxonomic and functional diversity of fishes is concentrated in the West Atlantic Forest. Considering amphibians, are located in the East portion of the biome. The spatial correlation of species indicates the regions of the Serra do Mar and the extreme southern part of the Central Corridor as the main overlapped species distribution areas between both groups. New key conservation sites were reported within the Brazilian Atlantic Forest hotspot, revealing cross-taxon mismatches between terrestrial and freshwater ecosystems. This study offers useful spatial information integrating suitable habitats of fishes and amphibians to complement existing and future research based on terrestrial and freshwater conservation. New priorities for biodiversity conservation in rich-species regions highlight the importance of spatial pattern analysis to support land-use planning in a macroecological context.
Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Conservación de los Recursos Naturales/métodos , Anfibios , Biodiversidad , PecesRESUMEN
AIM: Species distributions are one of the most important ways to understand how communities interact through macroecological relationships. The functional abilities of a species, such as its plasticity in various environments, can determine its distribution, species richness and beta diversity patterns. In this study, we evaluate how functional traits influence the distribution of amphibians, and hypothesize which functional traits explain the current pattern of amphibian species composition. LOCATION: Atlantic Forest, Brazil. TAXON: Amphibia (Anura and Gymnophiona). METHODS: Using potential distributions of Brazilian amphibians from Atlantic Forest based on their functional traits, we analysed the influence of biotic and abiotic factors on species richness, endemism (with permutation multivariate analysis) and beta diversity components (i.e. total, turnover and nestedness dissimilarities). RESULTS: Environmental variables explained 59.5% of species richness, whereas functional traits explained 15.8% of species distribution (geographical species range) for Anuran and 88.8% for Gymnophiona. Body size had the strongest correlation with species distribution. Results showed that species with medium to large body size, and species that are adapted to living in open areas tended to disperse from west to east direction. Current forest changes directly affected beta diversity patterns (i.e. most species adapted to novel environments increase their ranges). Beta diversity partitioning between humid and dry forests showed decreased nestedness and increased turnover by increasing altitude in the south-eastern region of the Atlantic Forest. MAIN CONCLUSIONS: Our study shows that functional traits directly influence the ability of the species to disperse. With the alterations of the natural environment, species more apt to these alterations have dispersed or increased their distribution, which consequently changes community structure. As a result, there are nested species distribution patterns and homogenization of amphibian species composition throughout the Brazilian Atlantic Forest.
RESUMEN
Ecological connectivity depends on key elements within the landscape, which can support ecological fluxes, species richness and long-term viability of a biological community. Landscape planning requires clear aims and quantitative approaches to identify which key elements can reinforce the spatial coherence of protected areas design. We aim to explore the probability of the ecological connectivity of forest remnants and amphibian species distributions for current and future climate scenarios across the Central Corridor of the Brazilian Atlantic Forest. Integrating amphibian conservation, climate change and ecological corridors, we design a landscape ranking based on graph and circuit theories. To identify the sensitivity of connected areas to climate-dependent changes, we use the Model for Interdisciplinary Research on Climate by means of simulations for 2080-2100, representing a moderated emission scenario within an optimistic context. Our findings indicate that more than 70% of forest connectivity loss by climate change may drastically reduce amphibian dispersal in this region. We show that high amphibian turnover rates tend to be greater in the north-eastern edges of the corridor across ensembles of forecasts. Our spatial analysis reveals a general pattern of low-conductance areas in landscape surface, yet with some well-connected patches suggesting potential ecological corridors. Atlantic Forest reserves are expected to be less effective in a near future. For improved conservation outcomes, we recommend some landscape paths with low resistance values across space and time. We highlight the importance of maintaining forest remnants in the southern Bahia region by drafting a blueprint for functional biodiversity corridors.
Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Anfibios , Animales , Biodiversidad , Brasil , EcosistemaRESUMEN
Environmental heterogeneity is a factor which can help explain the higher local species richness. The objective of this study was to test if richness and composition of anurans species are related to available microhabitats and landscape type of sampled sites. We assume that a higher number of microhabitats increase environmental heterogeneity and this, in turn, affects species richness of amphibians. We performed the study in the Mesophytic Semideciduous Forest, a vegetation type within Atlantic Forest Domain. Between October 2010 and February 2011, we sampled 23 water bodies located in the agricultural, forest, and urban landscapes. The species richness was determined using survey at breeding sites methodology, and the availability of microhabitats was estimated visually. Thirty-four anuran species belonging to 12 families were recorded. The species richness in water bodies ranged from two to 13 species. The highest species richness was recorded in environments with a higher number of microhabitats, while the species composition in water bodies was partially grouped according to the predominant landscape type that is agricultural, forest, forest edge or urban. Our results suggest that species use specific environments (e.g. landscapes, habitat and microhabitat) for their reproductive activities.
Asunto(s)
Anuros/clasificación , Biodiversidad , Ecosistema , Animales , BrasilRESUMEN
Reptiles are highly susceptible to climate change, responding negatively to thermal and rainfall alterations mainly in relation to their reproductive processes. Based on that, we evaluated the effects of climate change on climatically suitable areas for the occurrence of snakes in the Atlantic Forest hotspot, considering the responses of distinct reproductive groups (oviparous and viviparous). We assessed the species richness and turnover patterns affected by climate change and projected the threat status of each snake species at the end of the century. We also evaluated the effectiveness of the protected areas in safeguarding the species by estimating the mean percentage overlap between snake species distribution and protected areas (PAs) network and by assessing whether such areas will gain or lose species under climate change. Our results showed greater species richness in the eastern-central portion of the Atlantic Forest at present. In general, we evidenced a drastic range contraction of the snake species under climate change. Temporal turnover tends to be high in the western and north-eastern edges of the biome, particularly for oviparous species. Our predictions indicate that 73.6% of oviparous species and 67.6% of viviparous species could lose at least half of their original range by 2080. We also found that existing protected areas of the Atlantic Forest Hotspot have a very limited capacity to safeguard snakes at the current time, maintaining the precarious protection in the future, with the majority of them predicted to lose species at the end of this century. Although oviparous and viviparous snakes have been designated to be dramatically impacted, our study suggests a greater fragility of the former in the face of climate change. We advocated that the creation of new protected areas and/or the redesign of the existing network to harbour regions that maximize the snake species occupancy in the face of future warming scenarios are crucial measures for the conservation of this group.
Asunto(s)
Biodiversidad , Cambio Climático , Bosques , Modelos Biológicos , Serpientes/fisiología , Animales , BrasilRESUMEN
The number of species of frogs in the South American genus Adelophryne has increased in recent years, and it has become apparent that this group contains a substantial amount of undescribed diversity. Currently the genus contains nine described species and five candidate species. Here we describe the tenth species of the genus Adelophryne from the municipality of Igrapiúna, southern Bahia state, Brazil. The new species is characterized by its small body size, indistinct tympanum, and two phalanges in the finger IV. The species of the genus are distributed in three groups, Northern Amazonia Clade, Northern Atlantic Forest Clade and Southern Atlantic Forest Clade. The new species is phylogenetically related to species of the Northern Atlantic Forest Clade of Adelophryne and restricted to forested habitat, as typical for other Adelophryne. The species is restricted to the pristine forests in the type locality, and we consider its conservation status as Near Threatened. New morphological and molecular data of other Adelophryne species are presented, extending the distribution of Adelophryne sp. 2, Adelophryne sp. 4, Adelophryne mucronata and Adelophryne glandulata. However, a more comprehensive revision of the diversity and phylogenetic position of most Adelophryne species is needed, and the evolutionary relationships of A. meridionalis and A. pachydactyla remain unknown.
Asunto(s)
Anuros/fisiología , Biodiversidad , Tamaño Corporal/fisiología , Bosques , Animales , Anuros/clasificación , Anuros/genética , Brasil , ADN Mitocondrial/química , ADN Mitocondrial/genética , Geografía , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Especificidad de la EspecieRESUMEN
The genus Adelophryne is composed of diminutive frogs occurring in northern Amazonia and the Atlantic Forest. Herein we describe a new species of Adelophryne found in the leaf litter of primary and secondary forests in the mountainous region of Espírito Santo state, southeastern Brazil. The new species is characterized by its small body size, two phalanges in the finger IV, and a glandular ridge line that runs from the posterior part of eye to the insertion of the forelimb. This species is sensitive to edge effect and conversion of native forest into coffee and Eucalyptus plantations and may be listed as Endangered (EN) under B1ab(iii) criteria of the IUCN Red List.