Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Genetics ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913695

RESUMEN

Increasing SNP density by incorporating sequence information only marginally increases prediction accuracies of breeding values in livestock. To find out why, we used statistical models and simulations to investigate the shape of distribution of estimated SNP effects (a profile) around Quantitative Trait Nucleotides (QTN) in populations with a small effective population size (Ne). A QTN profile created by averaging SNP effects around each QTN was similar to the shape of expected pairwise linkage disequilibrium (PLD) based on Ne and genetic distance between SNP, with a distinct peak for the QTN. Populations with smaller Ne showed lower but wider QTN profiles. However, adding more genotyped individuals with phenotypes dragged the profile closer to the QTN. The QTN profile was higher and narrower for populations with larger compared to smaller Ne. Assuming the PLD curve for the QTN profile, 80% of the additive genetic variance explained by each QTN was contained in ± 1/Ne Morgan interval around the QTN, corresponding to 2 Mb in cattle, and 5 Mb in pigs and chickens. With such large intervals, identifying QTN is difficult even if all of them are in the data and the assumed genetic architecture is simplistic. Additional complexity in QTN detection arises from confounding of QTN profiles with signals due to relationships, overlapping profiles with closely-spaced QTN, and spurious signals. However, small Ne allows for accurate predictions with large data even without QTN identification because QTN are accounted for by QTN profiles if SNP density is sufficient to saturate the segments.

2.
J Anim Sci ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847068

RESUMEN

Initial findings on genomic selection indicated substantial improvement for major traits, such as performance, and even successful selection for antagonistic traits. However, recent unofficial reports indicate an increased frequency of deterioration of secondary traits. This phenomenon may arise due to the mismatch between the accelerated selection process and resource allocation. Traits explicitly or implicitly accounted for by a selection index move toward the desired direction, whereas neglected traits change according to the genetic correlations with selected traits. Historically, the first stage of commercial genetic selection focused on production traits. After long-term selection, production traits improved, whereas fitness traits deteriorated, although this deterioration was partially compensated for by constantly improving management. Adding these fitness traits to the breeding objective and the used selection index also helped offset their decline while promoting long-term gains. Subsequently, the trend in observed fitness traits was a combination of a negative response due to genetic antagonism, positive response from inclusion in the selection index, and a positive effect of improving management. Under genomic selection, the genetic trends accelerate, especially for well-recorded higher heritability traits, magnifying the negative correlated responses for fitness traits. Then, the observed trend for fitness traits can become negative, especially because management modifications do not accelerate under genomic selection. Additional deterioration can occur due to the rapid turnover of genomic selection, as heritabilities for production traits can decline and the genetic antagonism between production and fitness traits can intensify. If the genetic parameters are not updated, the selection index will be inaccurate, and the intended gains would not occur. While the deterioration can accelerate for unrecorded or sparsely recorded fitness traits, genomic selection can lead to an improvement for widely recorded fitness traits. In the context of genomic selection, it is crucial to look for unexpected changes in relevant traits and take rapid steps to prevent further declines, especially in secondary traits. Changes can be anticipated by investigating the temporal dynamics of genetic parameters, especially genetic correlations. However, new methods are needed to estimate genetic parameters for the last generation with large amounts of genomic data.

3.
BMC Genomics ; 25(1): 623, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902640

RESUMEN

BACKGROUND: The genotype-by-environment interaction (GxE) in beef cattle can be investigated using reaction norm models to assess environmental sensitivity and, combined with genome-wide association studies (GWAS), to map genomic regions related to animal adaptation. Including genetic markers from whole-genome sequencing in reaction norm (RN) models allows us to identify high-resolution candidate genes across environmental gradients through GWAS. Hence, we performed a GWAS via the RN approach using whole-genome sequencing data, focusing on mapping candidate genes associated with the expression of reproductive and growth traits in Nellore cattle. For this purpose, we used phenotypic data for age at first calving (AFC), scrotal circumference (SC), post-weaning weight gain (PWG), and yearling weight (YW). A total of 20,000 males and 7,159 females genotyped with 770k were imputed to the whole sequence (29 M). After quality control and linkage disequilibrium (LD) pruning, there remained ∼ 2.41 M SNPs for SC, PWG, and YW and ∼ 5.06 M SNPs for AFC. RESULTS: Significant SNPs were identified on Bos taurus autosomes (BTA) 10, 11, 14, 18, 19, 20, 21, 24, 25 and 27 for AFC and on BTA 4, 5 and 8 for SC. For growth traits, significant SNP markers were identified on BTA 3, 5 and 20 for YW and PWG. A total of 56 positional candidate genes were identified for AFC, 9 for SC, 3 for PWG, and 24 for YW. The significant SNPs detected for the reaction norm coefficients in Nellore cattle were found to be associated with growth, adaptative, and reproductive traits. These candidate genes are involved in biological mechanisms related to lipid metabolism, immune response, mitogen-activated protein kinase (MAPK) signaling pathway, and energy and phosphate metabolism. CONCLUSIONS: GWAS results highlighted differences in the physiological processes linked to lipid metabolism, immune response, MAPK signaling pathway, and energy and phosphate metabolism, providing insights into how different environmental conditions interact with specific genes affecting animal adaptation, productivity, and reproductive performance. The shared genomic regions between the intercept and slope are directly implicated in the regulation of growth and reproductive traits in Nellore cattle raised under different environmental conditions.


Asunto(s)
Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Reproducción , Secuenciación Completa del Genoma , Animales , Bovinos/genética , Bovinos/crecimiento & desarrollo , Reproducción/genética , Femenino , Masculino , Genotipo , Fenotipo , Sitios de Carácter Cuantitativo , Desequilibrio de Ligamiento
4.
J Anim Breed Genet ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38812461

RESUMEN

Brazilian livestock breeding programmes strive to enhance the genetics of beef cattle, with a strong emphasis on the Nellore breed, which has an extensive database and has achieved significant genetic progress in the last years. There are other indicine breeds that are economically important in Brazil; however, these breeds have more modest sets of phenotypes, pedigree and genotypes, slowing down their genetic progress as their predictions are less accurate. Combining several breeds in a multi-breed evaluation could help enhance predictions for those breeds with less information available. This study aimed to evaluate the feasibility of multi-breed, single-step genomic best linear unbiased predictor genomic evaluations for Nellore, Brahman, Guzerat and Tabapua. Multi-breed evaluations were contrasted to the single-breed ones. Data were sourced from the National Association of Breeders and Researchers of Brazil and included pedigree (4,207,516), phenotypic (328,748), and genomic (63,492) information across all breeds. Phenotypes were available for adjusted weight at 210 and 450 days of age, and scrotal circumference at 365 days of age. Various scenarios were evaluated to ensure pedigree and genomic information compatibility when combining different breeds, including metafounders (MF) or building the genomic relationship matrix with breed-specific allele frequencies. Scenarios were compared using the linear regression method for bias, dispersion and accuracy. The results showed that using multi-breed evaluations significantly improved accuracy, especially for smaller breeds like Guzerat and Tabapua. The validation statistics indicated that the MF approach provided accurate predictions, albeit with some bias. While single-breed evaluations tended to have lower accuracy, merging all breeds in multi-breed evaluations increased accuracy and reduced dispersion. This study demonstrates that multi-breed genomic evaluations are proper for indicine beef cattle breeds. The MF approach may be particularly beneficial for less-represented breeds, addressing limitations related to small reference populations and incompatibilities between G and A22. By leveraging genomic information across breeds, breeders and producers can make more informed selection decisions, ultimately improving genetic gain in these cattle populations.

5.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38576313

RESUMEN

Accurate genetic parameters are crucial for predicting breeding values and selection responses in breeding programs. Genetic parameters change with selection, reducing additive genetic variance and changing genetic correlations. This study investigates the dynamic changes in genetic parameters for residual feed intake (RFI), gain (GAIN), breast percentage (BP), and femoral head necrosis (FHN) in a broiler population that undergoes selection, both with and without the use of genomic information. Changes in single nucleotide polymorphism (SNP) effects were also investigated when including genomic information. The dataset containing 200,093 phenotypes for RFI, 42,895 for BP, 203,060 for GAIN, and 63,349 for FHN was obtained from 55 mating groups. The pedigree included 1,252,619 purebred broilers, of which 154,318 were genotyped with a 60K Illumina Chicken SNP BeadChip. A Bayesian approach within the GIBBSF90 + software was applied to estimate the genetic parameters for single-, two-, and four-trait models with sliding time intervals. For all models, we used genomic-based (GEN) and pedigree-based approaches (PED), meaning with or without genotypes. For GEN (PED), heritability varied from 0.19 to 0.2 (0.31 to 0.21) for RFI, 0.18 to 0.11 (0.25 to 0.14) for GAIN, 0.45 to 0.38 (0.61 to 0.47) for BP, and 0.35 to 0.24 (0.53 to 0.28) for FHN, across the intervals. Changes in genetic correlations estimated by GEN (PED) were 0.32 to 0.33 (0.12 to 0.25) for RFI-GAIN, -0.04 to -0.27 (-0.18 to -0.27) for RFI-BP, -0.04 to -0.07 (-0.02 to -0.08) for RFI-FHN, -0.04 to 0.04 (0.06 to 0.2) for GAIN-BP, -0.17 to -0.06 (-0.02 to -0.01) for GAIN-FHN, and 0.02 to 0.07 (0.06 to 0.07) for BP-FHN. Heritabilities tended to decrease over time while genetic correlations showed both increases and decreases depending on the traits. Similar to heritabilities, correlations between SNP effects declined from 0.78 to 0.2 for RFI, 0.8 to 0.2 for GAIN, 0.73 to 0.16 for BP, and 0.71 to 0.14 for FHN over the eight intervals with genomic information, suggesting potential epistatic interactions affecting genetic trait architecture. Given rapid genetic architecture changes and differing estimates between genomic and pedigree-based approaches, using more recent data and genomic information to estimate variance components is recommended for populations undergoing genomic selection to avoid potential biases in genetic parameters.


Genetic parameters are used to predict breeding values for individuals in breeding programs undergoing selection. However, inaccurate genetic parameters can cause breeding values to be biased, and genetic parameters can change over time due to multiple factors. This study aimed to investigate how genetic parameters changed over time in a broiler population using time intervals and observing the behavior of single nucleotide polymorphism (SNP) effects. We studied four traits related to production and disorders while also studying the impact of using genomic information on the estimates. Genetic variances showed an overall decreasing trend, whereas residual variances increased during each interval, resulting in decreasing heritability estimates. Genetic correlations between traits varied but with no major changes over time. Estimates tended to be lower when genomic information was included in the analysis. SNP effects showed changes over time, indicating changes to the genetic background of this population. Using outdated variance components in a population under selection may not represent the current population. Furthermore, when genomic selection is practiced, accounting for this information while estimating variance components is important to avoid biases.


Asunto(s)
Pollos , Polimorfismo de Nucleótido Simple , Selección Genética , Animales , Pollos/genética , Masculino , Femenino , Cruzamiento , Linaje , Genotipo , Enfermedades de las Aves de Corral/genética , Genómica , Fenotipo , Teorema de Bayes , Modelos Genéticos
6.
Genet Sel Evol ; 56(1): 29, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627636

RESUMEN

BACKGROUND: With the introduction of digital phenotyping and high-throughput data, traits that were previously difficult or impossible to measure directly have become easily accessible, offering the opportunity to enhance the efficiency and rate of genetic gain in animal production. It is of interest to assess how behavioral traits are indirectly related to the production traits during the performance testing period. The aim of this study was to assess the quality of behavior data extracted from day-wise video recordings and estimate the genetic parameters of behavior traits and their phenotypic and genetic correlations with production traits in pigs. Behavior was recorded for 70 days after on-test at about 10 weeks of age and ended at off-test for 2008 female purebred pigs, totaling 119,812 day-wise records. Behavior traits included time spent eating, drinking, laterally lying, sternally lying, sitting, standing, and meters of distance traveled. A quality control procedure was created for algorithm training and adjustment, standardizing recording hours, removing culled animals, and filtering unrealistic records. RESULTS: Production traits included average daily gain (ADG), back fat thickness (BF), and loin depth (LD). Single-trait linear models were used to estimate heritabilities of the behavior traits and two-trait linear models were used to estimate genetic correlations between behavior and production traits. The results indicated that all behavior traits are heritable, with heritability estimates ranging from 0.19 to 0.57, and showed low-to-moderate phenotypic and genetic correlations with production traits. Two-trait linear models were also used to compare traits at different intervals of the recording period. To analyze the redundancies in behavior data during the recording period, the averages of various recording time intervals for the behavior and production traits were compared. Overall, the average of the 55- to 68-day recording interval had the strongest phenotypic and genetic correlation estimates with the production traits. CONCLUSIONS: Digital phenotyping is a new and low-cost method to record behavior phenotypes, but thorough data cleaning procedures are needed. Evaluating behavioral traits at different time intervals offers a deeper insight into their changes throughout the growth periods and their relationship with production traits, which may be recorded at a less frequent basis.


Asunto(s)
Conducta Alimentaria , Porcinos/genética , Femenino , Animales , Fenotipo , Modelos Lineales
7.
J Anim Breed Genet ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38523564

RESUMEN

Estimating heritabilities with large genomic models by established methods such as restricted maximum likelihood (REML) or Bayesian via Gibbs sampling is computationally expensive. Alternatively, heritability can be estimated indirectly by method R and by maximum predictivity, referred to as MaxPred here, at a much lower computing cost. By method R, the heritability used for predictions with whole and partial data is considered the best estimate when the predictions based on partial data are unbiased relative to those with the complete data. By MaxPred, the heritability estimate is the one that maximizes predictivity. This study compared heritability estimation with genomic information using average information REML (AI-REML), method R and MaxPred. A simulated population was generated with ten generations of 5000 animals each and an effective population size of 80. Each animal had one record for a trait with a heritability of 0.3, a phenotypic variance of 10.0 and was genotyped at 50 k SNP. In method R, the heritability estimate is found when the expectation of a regression coefficient is equal to one. The regression is the EBV of selection candidates calculated with the whole dataset regressed on the EBV of candidates calculated from a partial dataset. In this study, we used the GBLUP framework and therefore, GEBV was calculated. The partial dataset was created by removing the last generation of phenotypes. Predictivity was defined as the correlation between the adjusted phenotypes of the selection candidates and their GEBV calculated from the partial data. We estimated the heritability for populations that included between three and 10 generations. In every scenario, predictivity increased as more data was used and was the highest at the simulated heritability. However, the predictivity for all data subsets and all heritabilities compared did not differ more than 0.01, suggesting MaxPred is not the best indication for heritability estimation. For the whole dataset, the heritability was estimated as 0.30 ± 0.01, 0.26 ± 0.01 and 0.30 ± 0.04 for AI-REML without genomics, AI-REML with genomics and method R with genomics, respectively. Heritability estimation with genomics by method R reduced timing by 83%, implying a reduction in computing time from 9.5 to 1.6 h, on average, compared to AI-REML with genomics. Method R has the potential to estimate heritabilities with large genomic information at a low cost when many generations of animals are present; however, the standard error can be high when only a few iterations are used.

8.
Genet Sel Evol ; 56(1): 18, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459504

RESUMEN

BACKGROUND: Validation by data truncation is a common practice in genetic evaluations because of the interest in predicting the genetic merit of a set of young selection candidates. Two of the most used validation methods in genetic evaluations use a single data partition: predictivity or predictive ability (correlation between pre-adjusted phenotypes and estimated breeding values (EBV) divided by the square root of the heritability) and the linear regression (LR) method (comparison of "early" and "late" EBV). Both methods compare predictions with the whole dataset and a partial dataset that is obtained by removing the information related to a set of validation individuals. EBV obtained with the partial dataset are compared against adjusted phenotypes for the predictivity or EBV obtained with the whole dataset in the LR method. Confidence intervals for predictivity and the LR method can be obtained by replicating the validation for different samples (or folds), or bootstrapping. Analytical confidence intervals would be beneficial to avoid running several validations and to test the quality of the bootstrap intervals. However, analytical confidence intervals are unavailable for predictivity and the LR method. RESULTS: We derived standard errors and Wald confidence intervals for the predictivity and statistics included in the LR method (bias, dispersion, ratio of accuracies, and reliability). The confidence intervals for the bias, dispersion, and reliability depend on the relationships and prediction error variances and covariances across the individuals in the validation set. We developed approximations for large datasets that only need the reliabilities of the individuals in the validation set. The confidence intervals for the ratio of accuracies and predictivity were obtained through the Fisher transformation. We show the adequacy of both the analytical and approximated analytical confidence intervals and compare them versus bootstrap confidence intervals using two simulated examples. The analytical confidence intervals were closer to the simulated ones for both examples. Bootstrap confidence intervals tend to be narrower than the simulated ones. The approximated analytical confidence intervals were similar to those obtained by bootstrapping. CONCLUSIONS: Estimating the sampling variation of predictivity and the statistics in the LR method without replication or bootstrap is possible for any dataset with the formulas presented in this study.


Asunto(s)
Genómica , Modelos Genéticos , Humanos , Genotipo , Reproducibilidad de los Resultados , Intervalos de Confianza , Linaje , Genómica/métodos , Fenotipo
9.
Palliat Support Care ; 22(3): 499-510, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38178271

RESUMEN

OBJECTIVES: Advancements in medicine and science have enabled more and more people to live longer with a chronic medical condition, namely cancer. Nevertheless, the palliative care (PC) approach continues to be introduced and incorporated later in the lives of patients and families dealing with such conditions. Thus, the need for individuals to care for this population in our society is increasing, giving rise to the so-called "informal caregivers." The present study intends to examine the main obstacles faced by informal caregivers taking care of a cancer patient receiving PC based on what health professionals working in these settings perceive and write down. To achieve this goal, the written files of 2 Portuguese palliative care institutions were analyzed. METHODS: An inductive thematic analysis was conducted, focusing on the contact between health professionals and family caregivers and based on the notes taken by health professionals. RESULTS: Three main overarching themes were identified: (1) burden, (2) intra-family impact of the illness, and (3) network vulnerabilities. Included in this are the emphasis on the role of the family and social support, the high levels of psychological morbidity and caregiver burden present over this period, and a great need for information about the illness. SIGNIFICANCE OF RESULTS: This study provided a broader awareness regarding the daily struggle experienced by family caregivers, particularly those who juggle between "roles." It is vital to understand the scope of the obstacles experienced by caregivers during the terminal phase of their loved one's illness, given how important it is to address the family's needs. Future studies and practitioners should consider these observations and topics when considering new approaches for this population, as they ought to be quite focused and short in time in order to meet people's needs.


Asunto(s)
Cuidadores , Personal de Salud , Cuidados Paliativos , Investigación Cualitativa , Humanos , Cuidadores/psicología , Masculino , Femenino , Personal de Salud/psicología , Portugal , Cuidados Paliativos/psicología , Cuidados Paliativos/métodos , Cuidados Paliativos/normas , Persona de Mediana Edad , Adulto , Anciano , Apoyo Social , Neoplasias/psicología , Neoplasias/complicaciones , Actitud del Personal de Salud
10.
J Anim Breed Genet ; 141(3): 291-303, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38062881

RESUMEN

Feed efficiency plays a major role in the overall profitability and sustainability of the beef cattle industry, as it is directly related to the reduction of the animal demand for input and methane emissions. Traditionally, the average daily feed intake and weight gain are used to calculate feed efficiency traits. However, feed efficiency traits can be analysed longitudinally using random regression models (RRMs), which allow fitting random genetic and environmental effects over time by considering the covariance pattern between the daily records. Therefore, the objectives of this study were to: (1) propose genomic evaluations for dry matter intake (DMI), body weight gain (BWG), residual feed intake (RFI) and residual weight gain (RWG) data collected during an 84-day feedlot test period via RRMs; (2) compare the goodness-of-fit of RRM using Legendre polynomials (LP) and B-spline functions; (3) evaluate the genetic parameters behaviour for feed efficiency traits and their implication for new selection strategies. The datasets were provided by the EMBRAPA-GENEPLUS beef cattle breeding program and included 2920 records for DMI, 2696 records for BWG and 4675 genotyped animals. Genetic parameters and genomic breeding values (GEBVs) were estimated by RRMs under ssGBLUP for Nellore cattle using orthogonal LPs and B-spline. Models were compared based on the deviance information criterion (DIC). The ranking of the average GEBV of each test week and the overall GEBV average were compared by the percentage of individuals in common and the Spearman correlation coefficient (top 1%, 5%, 10% and 100%). The highest goodness-of-fit was obtained with linear B-Spline function considering heterogeneous residual variance. The heritability estimates across the test period for DMI, BWG, RFI and RWG ranged from 0.06 to 0.21, 0.11 to 0.30, 0.03 to 0.26 and 0.07 to 0.27, respectively. DMI and RFI presented within-trait genetic correlations ranging from low to high magnitude across different performance test-day. In contrast, BWG and RWG presented negative genetic correlations between the first 3 weeks and the other days of performance tests. DMI and RFI presented a high-ranking similarity between the GEBV average of week eight and the overall GEBV average, with Spearman correlations and percentages of individuals selected in common ranging from 0.95 to 1.00 and 93 to 100, respectively. Week 11 presented the highest Spearman correlations (ranging from 0.94 to 0.98) and percentages of individuals selected in common (ranging from 85 to 94) of BWG and RWG with the average GEBV of the entire period of the test. In conclusion, the RRM using linear B-splines is a feasible alternative for the genomic evaluation of feed efficiency. Heritability estimates of DMI, RFI, BWG and RWG indicate enough additive genetic variance to achieve a moderate response to selection. A new selection strategy can be adopted by reducing the performance test to 56 days for DMI and RFI selection and 77 days for BWG and RWG selection.


Asunto(s)
Genoma , Genómica , Humanos , Bovinos/genética , Animales , Fenotipo , Aumento de Peso/genética , Genotipo , Ingestión de Alimentos/genética , Alimentación Animal
11.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37837636

RESUMEN

Genomic estimated breeding values (GEBV) of animals without phenotypes can be indirectly predicted using recursions on GEBV of a subset. To maximize predictive ability of indirect predictions (IP), the subset must represent the independent chromosome segments segregating in the population. We aimed to 1) determine the number of animals needed in recursions to maximize predictive ability, 2) evaluate equivalency IP-GEBV, and 3) investigate trends in predictive ability of IP derived from recent vs. distant generations or accumulating phenotypes from recent to past generations. Data comprised pedigree of 825K birds hatched over 12 overlapping generations, phenotypes for body weight (BW; 820K), residual feed intake (RF; 200K) and weight gain during a trial period (WG; 200K), and breast meat percent (BP; 43K). A total of 154K birds (last six generations) had genotypes. The number of animals that maximize predictive ability was assessed based on the number of largest eigenvalues explaining 99% of variation in the genomic relationship matrix (1Me = 7,131), twice (2Me), or a fraction of this number (i.e., 0.75, 0.50, or 0.25Me). Equivalency between IP and GEBV was measured by correlating these two sets of predictions. GEBV were obtained as if generation 12 (validation animals) was part of the evaluation. IP were derived from GEBV of animals from generations 8 to 11 or generations 11, 10, 9, or 8. IP predictive ability was defined as the correlation between IP and adjusted phenotypes. The IP predictive ability increased from 0.25Me to 1Me (11%, on average); the change from 1Me to 2Me was negligible (0.6%). The correlation IP-GEBV was the same when IP were derived from a subset of 1Me animals chosen randomly across generations (8 to 11) or from generation 11 (0.98 for BW, 0.99 for RF, WG, and BP). A marginal decline in the correlation was observed when IP were based on GEBV of animals from generation 8 (0.95 for BW, 0.98 for RF, WG, and BP). Predictive ability had a similar trend; from generation 11 to 8, it changed from 0.32 to 0.31 for BW, from 0.39 to 0.38 for BP, and was constant at 0.33(0.22) for RF(WG). Predictive ability had a slight to moderate increase accumulating up to four generations of phenotypes. 1Me animals provide accurate IP, equivalent to GEBV. A minimum decay in predictive ability is observed when IP are derived from GEBV of animals from four generations back, possibly because of strong selection or the model not being completely additive.


Genomic estimated breeding values (GEBV) of genotyped animals without phenotypes can be obtained by indirect predictions (IP) using recursions on GEBV from a subset. Our objectives were to 1) evaluate the number of animals needed in recursions to maximize predictive ability, 2) assess equivalency between IP and GEBV, and 3) investigate trends in predictive ability of IP derived from recent vs. distant generations or accumulating phenotypes from recent to past generations. The number of animals (7,131) in the recursions that provided high-predictive ability was equal to the number of largest eigenvalues explaining 99% of variation in the genomic relationship matrix. IP and GEBV were equivalent (correlation ≥ 0.98). IP predictive ability was similar when recursions were based on animals from recent or distant generations; it marginally decayed with animals from four generations apart. The decline in predictive ability can be explained by strong selection or the model not being fully additive. A slight to moderate increase in IP predictive ability was observed accumulating up to four generations of phenotypes. If GEBV of animals in the subset chosen for recursions are estimated using sufficient data, animals can be from up to four generations back without significant loss in predictive ability.


Asunto(s)
Pollos , Modelos Genéticos , Animales , Pollos/genética , Genoma , Genómica , Genotipo , Fenotipo , Linaje
12.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37584978

RESUMEN

Historical data collection for genetic evaluation purposes is a common practice in animal populations; however, the larger the dataset, the higher the computing power needed to perform the analyses. Also, fitting the same model to historical and recent data may be inappropriate. Data truncation can reduce the number of equations to solve, consequently decreasing computing costs; however, the large volume of genotypes is responsible for most of the increase in computations. This study aimed to assess the impact of removing genotypes along with phenotypes and pedigree on the computing performance, reliability, and inflation of genomic predicted breeding value (GEBV) from single-step genomic best linear unbiased predictor for selection candidates. Data from two pig lines, a terminal sire (L1) and a maternal line (L2), were analyzed in this study. Four analyses were implemented: growth and "weaning to finish" mortality on L1, pre-weaning and reproductive traits on L2. Four genotype removal scenarios were proposed: removing genotyped animals without phenotypes and progeny (noInfo), removing genotyped animals based on birth year (Age), the combination of noInfo and Age scenarios (noInfo + Age), and no genotype removal (AllGen). In all scenarios, phenotypes were removed, based on birth year, and three pedigree depths were tested: two and three generations traced back and using the entire pedigree. The full dataset contained 1,452,257 phenotypes for growth traits, 324,397 for weaning to finish mortality, 517,446 for pre-weaning traits, and 7,853,629 for reproductive traits in pure and crossbred pigs. Pedigree files for lines L1 and L2 comprised 3,601,369 and 11,240,865 animals, of which 168,734 and 170,121 were genotyped, respectively. In each truncation scenario, the linear regression method was used to assess the reliability and dispersion of GEBV for genotyped parents (born after 2019). The number of years of data that could be removed without harming reliability depended on the number of records, type of analyses (multitrait vs. single trait), the heritability of the trait, and data structure. All scenarios had similar reliabilities, except for noInfo, which performed better in the growth analysis. Based on the data used in this study, considering the last ten years of phenotypes, tracing three generations back in the pedigree, and removing genotyped animals not contributing own or progeny phenotypes, increases computing efficiency with no change in the ability to predict breeding values.


Recording data for long years is common in animal breeding and genetics. However, the larger the data, the higher the computing cost of the analysis, especially with genomic information. This study aimed to investigate the impact of removing data, namely, genotypes, phenotypes, and pedigree, on the computing performance and prediction ability of genomic breeding values. We tested four scenarios to remove genotyped individuals in pig populations. For each scenario, phenotypes were removed according to birth year, and the pedigree was either kept complete or traced back from two to three generations. Reliabilities for young, genotyped animals did not differ after removing genotypes for older or less important animals. However, using only two generations of data slightly reduces the reliability for young, genotyped animals. The dispersion did not change across the studied scenarios, and its worst value was observed when using only one generation in the pedigree. Using the last ten years of phenotypes, a pedigree depth of three generations, and removing genotyped animals not contributing own or progeny phenotypes reduces computing cost with no change in the ability to predict breeding values.


Asunto(s)
Genómica , Modelos Genéticos , Animales , Porcinos/genética , Linaje , Reproducibilidad de los Resultados , Fenotipo , Genómica/métodos
13.
Genet Sel Evol ; 55(1): 49, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460964

RESUMEN

BACKGROUND: Identifying true positive variants in genome-wide associations (GWA) depends on several factors, including the number of genotyped individuals. The limited dimensionality of genomic information may give insights into the optimal number of individuals to be used in GWA. This study investigated different discovery set sizes based on the number of largest eigenvalues explaining a certain proportion of variance in the genomic relationship matrix (G). In addition, we investigated the impact on the prediction accuracy by adding variants, which were selected based on different set sizes, to the regular single nucleotide polymorphism (SNP) chips used for genomic prediction. METHODS: We simulated sequence data that included 500k SNPs with 200 or 2000 quantitative trait nucleotides (QTN). A regular 50k panel included one in every ten simulated SNPs. Effective population size (Ne) was set to 20 or 200. GWA were performed using a number of genotyped animals equivalent to the number of largest eigenvalues of G (EIG) explaining 50, 60, 70, 80, 90, 95, 98, and 99% of the variance. In addition, the largest discovery set consisted of 30k genotyped animals. Limited or extensive phenotypic information was mimicked by changing the trait heritability. Significant and large-effect size SNPs were added to the 50k panel and used for single-step genomic best linear unbiased prediction (ssGBLUP). RESULTS: Using a number of genotyped animals corresponding to at least EIG98 allowed the identification of QTN with the largest effect sizes when Ne was large. Populations with smaller Ne required more than EIG98. Furthermore, including genotyped animals with a higher reliability (i.e., a higher trait heritability) improved the identification of the most informative QTN. Prediction accuracy was highest when the significant or the large-effect SNPs representing twice the number of simulated QTN were added to the 50k panel. CONCLUSIONS: Accurately identifying causative variants from sequence data depends on the effective population size and, therefore, on the dimensionality of genomic information. This dimensionality can help identify the most suitable sample size for GWA and could be considered for variant selection, especially when resources are restricted. Even when variants are accurately identified, their inclusion in prediction models has limited benefits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Modelos Genéticos , Animales , Reproducibilidad de los Resultados , Genoma , Genómica , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple
14.
Genet Sel Evol ; 55(1): 55, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495982

RESUMEN

BACKGROUND: Whole-genome sequence (WGS) data harbor causative variants that may not be present in standard single nucleotide polymorphism (SNP) chip data. The objective of this study was to investigate the impact of using preselected variants from WGS for single-step genomic predictions in maternal and terminal pig lines with up to 1.8k sequenced and 104k sequence imputed animals per line. METHODS: Two maternal and four terminal lines were investigated for eight and seven traits, respectively. The number of sequenced animals ranged from 1365 to 1491 for the maternal lines and 381 to 1865 for the terminal lines. Imputation to sequence occurred within each line for 66k to 76k animals for the maternal lines and 29k to 104k animals for the terminal lines. Two preselected SNP sets were generated based on a genome-wide association study (GWAS). Top40k included the SNPs with the lowest p-value in each of the 40k genomic windows, and ChipPlusSign included significant variants integrated into the porcine SNP chip used for routine genotyping. We compared the performance of single-step genomic predictions between using preselected SNP sets assuming equal or different variances and the standard porcine SNP chip. RESULTS: In the maternal lines, ChipPlusSign and Top40k showed an average increase in accuracy of 0.6 and 4.9%, respectively, compared to the regular porcine SNP chip. The greatest increase was obtained with Top40k, particularly for fertility traits, for which the initial accuracy based on the standard SNP chip was low. However, in the terminal lines, Top40k resulted in an average loss of accuracy of 1%. ChipPlusSign provided a positive, although small, gain in accuracy (0.9%). Assigning different variances for the SNPs slightly improved accuracies when using variances obtained from BayesR. However, increases were inconsistent across the lines and traits. CONCLUSIONS: The benefit of using sequence data depends on the line, the size of the genotyped population, and how the WGS variants are preselected. When WGS data are available on hundreds of thousands of animals, using sequence data presents an advantage but this remains limited in pigs.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genoma , Animales , Porcinos/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple
15.
Genet Sel Evol ; 55(1): 52, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488486

RESUMEN

BACKGROUND: Skin damage is a trait of economic and welfare importance that results from social interactions between animals. These interactions may produce wound signs on the gilt's skin as a result of damage behavior (i.e., fighting), biting syndromes (i.e., tail, vulva, or ear biting), and swine inflammation and necrosis syndrome. Although current selection for traits that are affected by social interactions primarily focuses on improving direct genetic effects, combined selection on direct and social genetic effects could increase genetic gain and avoid a negative response to selection in cases of competitive behavior. The objectives of this study were to (1) estimate variance components for combined skin damage (CSD), with or without accounting for social genetic effects, (2) investigate the impact of including genomic information on the prediction accuracy, bias, and dispersion of CSD estimated breeding values, and (3) perform a single-step genome-wide association study (ssGWAS) of CSD under a classical and a social interaction model. RESULTS: Our results show that CSD is heritable and affected by social genetic effects. Modeling CSD with social interaction models increased the total heritable variance relative to the phenotypic variance by three-fold compared to the classical model. Including genomic information increased the prediction accuracy of direct, social, and total estimated breeding values for purebred sires by at least 21.2%. Bias and dispersion of estimated breeding values were reduced by including genomic information in classical and social interaction models but remained present. The ssGWAS did not identify any single nucleotide polymorphism that was significantly associated with social or direct genetic effects for CSD. CONCLUSIONS: Combined skin damage is heritable, and genetic selection against this trait will increase the welfare of animals in the long term. Combined skin damage is affected by social genetic effects, and modeling this trait with a social interaction model increases the potential for genetic improvement. Including genomic information increases the prediction accuracy of estimated breeding values and reduces their bias and dispersion, although some biases persist. The results of the genome-wide association study indicate that CSD has a polygenic architecture and no major quantitative trait locus was detected.


Asunto(s)
Estudio de Asociación del Genoma Completo , Interacción Social , Porcinos , Animales , Femenino , Sus scrofa , Genómica , Conducta Competitiva
16.
JDS Commun ; 4(4): 260-264, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37521061

RESUMEN

The dairy industry is known for its extensive use of artificial insemination, which has resulted in a population where most animals can be traced back to only a few sires. Due to their relatedness to the population, old influential sires could still contribute to the accuracy of genomic predictions. The objective of the study was to identify the impact of historically influential sires on the recent population. This was tested by constructing a genomic relationship matrix using recursion with different sets of sires. Differences in prediction accuracies with different sets are indicative of how important each set is. Recursion coefficients linking young animals to those sets reveal the relative importance of specific sires to the prediction accuracy of recent animals. The data included ∼10 million scores for stature and fore udder attachment (FUA) measured from 1983. Genotypes of 569,404 animals were available. Sire sets included the 100 most popular sires born within different time periods. Computations were with single-step genomic BLUP. In general, the younger sires had higher prediction accuracies than the oldest sires, even though they generally have fewer progeny. The accuracy of evaluation for stature was increased from 0.54 with the most popular sires born before 1981 to 0.69 with sires born from 2001 to 2010, while the accuracy for FUA increased from 0.47 to 0.61. The accuracy achieved using the overall 100 most used sires was 0.66 for stature and 0.58 for FUA. All 100 sires from each period were combined in a subset to determine the importance of each sire relative to all 400 animals in the combined subset. The highest relative impact of a sire that was born within the different time sets was 1.97 for Valiant (before 1981), 1.94 for Blackstar (1981 to 1990), 4.38 for Shottle (1991 to 2000), and 3.09 for Planet (2001 to 2010). The 3 sires among the 400 with the greatest impact were Shottle, Goldwyn (3.73), and Planet. The relative impact of a sire was not strongly related to the number of progeny. For instance, the relative impact of Durham with 34K progeny was 2.29, whereas the impact of O Man with 15K progeny was 3.13. The impact of a sire is also influenced by whether it was used as a sire of sires. Results show that younger sires are more relevant to the accuracy of breeding value prediction in the recent population.

17.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37249185

RESUMEN

In broiler breeding, superior individuals for growth become parents and are later evaluated for reproduction in an independent evaluation; however, ignoring broiler data can produce inaccurate and biased predictions. This research aimed to determine the most accurate, unbiased, and time-efficient approach for jointly evaluating reproductive and broiler traits. The data comprised a pedigree with 577K birds, 146K genotypes, phenotypes for three reproductive (egg production [EP], fertility [FE], hatch of fertile eggs [HF]; 9K each), and four broiler traits (body weight [BW], breast meat percent [BP], fat percent [FP], residual feed intake [RF]; up to 467K). Broiler data were added sequentially to assess the impact on the quality of predictions for reproductive traits. The baseline scenario (RE) included pedigrees, genotypes, and phenotypes for reproductive traits of selected animals; in RE2, we added their broiler phenotypes; in RE_BR, broiler phenotypes of nonselected animals, and in RE_BR_GE, their genotypes. We computed accuracy, bias, and dispersion of predictions for hens from the last two breeding cycles and their sires. We tested three core definitions for the algorithm of proven and young to find the most time-efficient approach: two random cores with 7K and 12K animals and one with 19K animals, containing parents and young animals. From RE to RE_BR_GE, changes in accuracy were null or minimal for EP (0.51 in hens, 0.59 in roosters) and HF (0.47 in hens, 0.49 in roosters); for FE in hens (roosters), it changed from 0.4 (0.49) to 0.47 (0.53). In hens (roosters), bias (additive SD units) decreased from 0.69 (0.7) to 0.04 (0.05) for EP, 1.48 (1.44) to 0.11 (0.03) for FE, and 1.06 (0.96) to 0.09 (0.02) for HF. Dispersion remained stable in hens (roosters) at ~0.93 (~1.03) for EP, and it improved from 0.57 (0.72) to 0.87 (1.0) for FE and from 0.8 (0.79) to 0.88 (0.87) for HF. Ignoring broiler data deteriorated the predictions' quality. The impact was significant for the low heritability trait (0.02; FE); bias (up to 1.5) and dispersion (as low as 0.57) were farther from the ideal value, and accuracy losses were up to 17.5%. Accuracy was maintained in traits with moderate heritability (~0.3; EP and HF), and bias and dispersion were less substantial. Adding information from the broiler phase maximized accuracy and unbiased predictions. The most time-efficient approach is a random core with 7K animals in the algorithm for proven and young.


In breeding programs with sequential selection, the estimation of breeding values becomes biased and inaccurate if the information from the past selection is ignored. We investigated the impact of incorporating broiler data (traits for past selection) into the evaluation of broiler reproductive traits. Including all the information increased the computing demands; therefore, we tested three core definitions for the algorithm for proven and young to determine the most accurate, unbiased, and time-efficient approach for jointly evaluating broiler and reproductive traits. When we ignored broiler data, the estimated breeding values for reproductive traits were biased (up to ~1.5 additive standard deviations). For low heritability traits, accuracy was reduced by up to 17.5%, and breeding values were overestimated (dispersion ~ 0.6). In contrast, incorporating broiler data eliminated bias and overestimation; and it maximized accuracy. A random core definition for the algorithm for proven and young with a number of animals equal to the number of the largest eigenvalues explaining 99% of the variation in the genomic relationship matrix is the most time-efficient, keeping accurate and unbiased predictions in the joint evaluation of broiler and reproductive traits.


Asunto(s)
Pollos , Óvulo , Animales , Femenino , Masculino , Pollos/genética , Genoma , Genómica , Genotipo , Fenotipo , Linaje , Modelos Genéticos
18.
Front Genet ; 14: 1163626, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37252662

RESUMEN

Genomic evaluations in pigs could benefit from using multi-line data along with whole-genome sequencing (WGS) if the data are large enough to represent the variability across populations. The objective of this study was to investigate strategies to combine large-scale data from different terminal pig lines in a multi-line genomic evaluation (MLE) through single-step GBLUP (ssGBLUP) models while including variants preselected from whole-genome sequence (WGS) data. We investigated single-line and multi-line evaluations for five traits recorded in three terminal lines. The number of sequenced animals in each line ranged from 731 to 1,865, with 60k to 104k imputed to WGS. Unknown parent groups (UPG) and metafounders (MF) were explored to account for genetic differences among the lines and improve the compatibility between pedigree and genomic relationships in the MLE. Sequence variants were preselected based on multi-line genome-wide association studies (GWAS) or linkage disequilibrium (LD) pruning. These preselected variant sets were used for ssGBLUP predictions without and with weights from BayesR, and the performances were compared to that of a commercial porcine single-nucleotide polymorphisms (SNP) chip. Using UPG and MF in MLE showed small to no gain in prediction accuracy (up to 0.02), depending on the lines and traits, compared to the single-line genomic evaluation (SLE). Likewise, adding selected variants from the GWAS to the commercial SNP chip resulted in a maximum increase of 0.02 in the prediction accuracy, only for average daily feed intake in the most numerous lines. In addition, no benefits were observed when using preselected sequence variants in multi-line genomic predictions. Weights from BayesR did not help improve the performance of ssGBLUP. This study revealed limited benefits of using preselected whole-genome sequence variants for multi-line genomic predictions, even when tens of thousands of animals had imputed sequence data. Correctly accounting for line differences with UPG or MF in MLE is essential to obtain predictions similar to SLE; however, the only observed benefit of an MLE is to have comparable predictions across lines. Further investigation into the amount of data and novel methods to preselect whole-genome causative variants in combined populations would be of significant interest.

20.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36860185

RESUMEN

The swine inflammation and necrosis syndrome (SINS) is a syndrome visually characterized by the presence of inflamed and necrotic skin at extreme body parts, such as the teats, tail, ears, and claw coronary bands. This syndrome is associated with several environmental causes, but knowledge of the role of genetics is still limited. Moreover, piglets affected by SINS are believed to be phenotypically more susceptible to chewing and biting behaviors from pen mates, which could cause a chronic reduction in their welfare throughout the production process. Our objectives were to 1) investigate the genetic basis of SINS expressed on piglets' different body parts and 2) estimate SINS genetic relationship with post-weaning skin damage and pre and post-weaning production traits. A total of 5,960 two to three-day-old piglets were scored for SINS on the teats, claws, tails, and ears as a binary phenotype. Later, those binary records were combined into a trait defined as TOTAL_SINS. For TOTAL_SINS, animals presenting no signs of SINS were scored as 1, whereas animals showing at least one affected part were scored as 2. Apart from SINS traits, piglets had their birth weight (BW) and weaning weight (WW) recorded, and up to 4,132 piglets were later evaluated for combined skin damage (CSD), carcass backfat (BF), and loin depth (LOD). In the first set of analyses, the heritability of SINS on different body parts was estimated with single-trait animal-maternal models, and pairwise genetic correlations between body parts were obtained from two-trait models. Later, we used four three-trait animal models with TOTAL_SINS, CSD, and an alternative production trait (i.e., BW, WW, LOD, BF) to access trait heritabilities and genetic correlations between SINS and production traits. The maternal effect was included in the BW, WW, and TOTAL_SINS models. The direct heritability of SINS on different body parts ranged from 0.08 to 0.34, indicating that reducing SINS incidence through genetic selection is feasible. The direct genetic correlation between TOTAL_SINS and pre-weaning growth traits (BW and WW) was favorable and negative (from -0.40 to -0.30), indicating that selection for animals genetically less prone to present signs of SINS will positively affect the piglet's genetics for heavier weight at birth and weaning. The genetic correlations between TOTAL_SINS and BF and between TOTAL_SINS and LOD were weak or not significant (-0.16 to 0.05). However, the selection against SINS was shown to be genetically correlated with CSD, with estimates ranging from 0.19 to 0.50. That means that piglets genetically less likely to present SINS signs are also more unlikely to suffer CSD after weaning, having a long-term increase in their welfare throughout the production system.


The swine inflammation and necrosis syndrome (SINS) is visually characterized by the presence of inflamed and necrotic skin at extreme body parts, such as the teats, tail, ears, and claw coronary bands. Piglets affected by this syndrome are considered phenotypically more susceptible to chewing and biting behaviors from pen mates. However, the genetic relationship between SINS and post-weaning skin damage is still unclear. In this study, we aimed to investigate the genetic basis of SINS expressed on piglets' different body parts and to estimate the SINS genetic relationship with skin damage and pre and post-weaning production traits. We showed that SINS on different body parts is heritable and that the direct selection against a combined score of SINS in different body parts (TOTAL_SINS) will favor the piglet's genetics for heavier weight at birth and weaning. However, TOTAL_SINS is not significantly correlated with carcass backfat thickness and loin depth at the piglet genetic level. The direct selection against SINS is genetically correlated with skin damage after weaning, meaning that piglets genetically more prone to present signs of SINS are more likely to receive skin damage later in life.


Asunto(s)
Parto , Enfermedades de los Porcinos , Embarazo , Femenino , Animales , Porcinos/genética , Destete , Fenotipo , Peso al Nacer/genética , Inflamación/veterinaria , Necrosis/genética , Necrosis/veterinaria , Peso Corporal , Enfermedades de los Porcinos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...