Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38792689

RESUMEN

In recent years, there has been an exponential increase in the number of papers that have investigated the microbiome of animals and humans [...].

2.
Microorganisms ; 12(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38543587

RESUMEN

The catabolic activity of the ruminal microbial community of cattle enables the conversion of low-quality feedstuffs into meat and milk. The rate at which this conversion occurs is termed feed efficiency, which is of crucial importance given that feed expenses account for up to 70% of the cost of animal production. The present study assessed the relationship between cattle feed efficiency and the composition of their ruminal microbial communities during the feedlot finishing period. Angus steers (n = 65) were fed a feedlot finishing diet for 82 days and their growth performance metrics were evaluated. These included the dry matter intake (DMI), average daily gain (ADG), and residual feed intake (RFI). Steers were rank-ordered based upon their RFI, and the five lowest RFI (most efficient) and five highest RFI (least efficient) steers were selected for evaluations. Ruminal fluid samples were collected on days 0 and 82 of the finishing period. Volatile fatty acids (VFA) were quantified, and microbial DNA was extracted and the 16S rRNA gene was sequenced. The results showed that the ADG was not different (p = 0.82) between efficiency groups during the 82-day feedlot period; however, the efficient steers had lower (p = 0.03) DMI and RFI (p = 0.003). Less-efficient (high RFI) steers developed higher (p = 0.01) ruminal Methanobrevibacter relative abundances (p = 0.01) and tended (p = 0.09) to have more Methanosphaera. In high-efficiency steers (low RFI), the relative abundances of Ruminococcaceae increased (p = 0.04) over the 82-day period. The molar proportions of VFA were not different between the two efficiency groups, but some changes in the concentration of specific VFA were observed over time. The results indicated that the ruminal microbial populations of the less-efficient steers contained a greater relative abundance of methanogens compared to the high-efficiency steers during the feedlot phase, likely resulting in more energetic waste in the form or methane and less dietary energy being harvested by the less-efficient animals.

3.
Animals (Basel) ; 14(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38338116

RESUMEN

This study aimed to understand the effect of C. jejuni challenge on the cecal microbiota and short-chain fatty acid (SCFA) concentration to form a better understanding of the host-pathogen interaction. Sixty broilers were randomly allocated into two treatments: control and challenge. Each treatment was replicated in six pens with five birds per pen. On day 21, birds in the challenge group were orally gavaged with 1 × 108C. jejuni/mL, while the control group was mock challenged with PBS. The C. jejuni challenge had no effect on body weight, feed intake, and feed conversion ratio compared to the control group. On day 28, the C. jejuni challenge decreased the observed features and Shannon index compared to the control group. On the species level, the C. jejuni challenge decreased (p = 0.02) the relative abundance of Sellimonas intestinalis on day 28 and increased (p = 0.04) the relative abundance of Faecalibacterium sp002160895 on day 35 compared to the control group. The C. jejuni challenge did not change the microbial function and the cecal concentrations of SCFA on days 28 and 35 compared to the control group. In conclusion, C. jejuni might alter the gut microbiota's composition and diversity without significantly compromising broilers' growth.

4.
Vet Sci ; 10(11)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37999473

RESUMEN

The objective of this study was to determine the impact of varying dietary manganese and selenium concentrations, antioxidant cofactors, on the growth performance and fecal microbial populations of nursery pigs. The piglets (N = 120) were blocked by weight (5.22 ± 0.7 kg) and sex. The pens (n = 5/treatment) within a block were randomly assigned to diets in a 2 × 3 factorial design to examine the effects of Se (0.1 and 0.3 mg/kg added Se) and Mn (0, 12, and 24 mg/kg added Mn) and were fed in three phases (P1 = d 1-7, P2 = d 8-21, P3 = d 22-35). The pigs and orts were weighed weekly. Fecal samples were collected d 0 and 35 for 16S rRNA bacterial gene sequencing and VFA analysis. The data were analyzed as factorial via GLM in SAS. There was a linear response (p < 0.05) in overall ADG across dietary Mn. Supplementing 24 mg/kg Mn tended to decrease (p < 0.10) the relative abundance of many bacteria possessing pathogenic traits relative to Mn controls. Meanwhile, increasing Mn concentration tended to foster the growth of bacteria correlated with gut health and improved growth (p < 0.10). The data from this study provide preliminary evidence on the positive effects of manganese on growth and gut health of nursery pigs.

5.
Anim Nutr ; 15: 430-442, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38033611

RESUMEN

A 21-d experiment was conducted to study the effect of xylanase, protease, and xylo-oligosaccharides on growth performance, nutrient utilization, gene expression of nutrient transporters, cecal short-chain fatty acids (SCFA), and cecal microbiota profile of broilers challenged with mixed Eimeria spp. The study utilized 392 zero-d-old male broiler chicks allocated to 8 treatments in a 4 × 2 factorial arrangement, as follows: corn-soybean meal diet with no enzyme (Con); Con plus xylanase alone (XYL); Con plus xylanase combined with protease (XYL + PRO); or Con plus xylo-oligosaccharides (XOS); with or without Eimeria challenge. Diets were based on a high-fiber (100 g/kg soluble fibers and 14 g/kg insoluble fibers) basal diet. At d 15, birds in challenged treatment were gavaged with a solution containing Eimeria maxima, Eimeria acervulina, and Eimeria tenella oocysts. At d 21, birds were sampled. Eimeria depressed (P < 0.01) growth performance and nutrient utilization, whereas supplementation had no effect. There were significant Eimeria × supplementation interactions for the sugar transporters GLUT5 (P = 0.02), SGLT1 (P = 0.01), SGLT4 (P < 0.01), and peptide transporter PepT1 (P < 0.01) in jejunal mucosa. Eimeria challenge increased the expression of GM-CSF2 (P < 0.01) and IL-17 (P = 0.04) but decreased (P = 0.03) IL-1ß expression in the cecal tonsil. Eimeria × supplementation interactions for cecal acetate, butyrate, and total SCFA showed that concentrations increased or tended to be greater in the supplemented treatments, but only in non-challenged birds. Birds challenged with Eimeria spp. had higher concentrations of isobutyrate (P < 0.01), isovalerate (P < 0.01), and valerate (P = 0.02) in cecal content. Eimeria challenge significantly (P < 0.01) decreased the microbial richness and diversity, and increased (P < 0.01) the proportion of Anaerostipes butyraticus, Bifidobacterium pseudolongum, and Lactobacillus pontis. In conclusion, Eimeria infection depressed growth performance, nutrient utilization with regulating nutrient transporters. Furthermore, Eimeria challenge shifted the microbial profile and reduced microbial richness and diversity. On the other hand, enzyme supplementation showed limited benefits, which included increased concentrations of SCFA.

6.
Front Neurosci ; 17: 1249539, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841685

RESUMEN

Pediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. Due to bidirectional communication between the brain and gut microbial population, introduction of key gut bacteria may mitigate critical TBI-induced secondary injury cascades, thus lessening neural damage and improving functional outcomes. The objective of this study was to determine the efficacy of a daily fecal microbial transplant (FMT) to alleviate neural injury severity, prevent gut dysbiosis, and improve functional recovery post TBI in a translational pediatric piglet model. Male piglets at 4-weeks of age were randomly assigned to Sham + saline, TBI + saline, or TBI + FMT treatment groups. A moderate/severe TBI was induced by controlled cortical impact and Sham pigs underwent craniectomy surgery only. FMT or saline were administered by oral gavage daily for 7 days. MRI was performed 1 day (1D) and 7 days (7D) post TBI. Fecal and cecal samples were collected for 16S rRNA gene sequencing. Ipsilateral brain and ileum tissue samples were collected for histological assessment. Gait and behavior testing were conducted at multiple timepoints. MRI showed that FMT treated animals demonstrated decreased lesion volume and hemorrhage volume at 7D post TBI as compared to 1D post TBI. Histological analysis revealed improved neuron and oligodendrocyte survival and restored ileum tissue morphology at 7D post TBI in FMT treated animals. Microbiome analysis indicated decreased dysbiosis in FMT treated animals with an increase in multiple probiotic Lactobacilli species, associated with anti-inflammatory therapeutic effects, in the cecum of the FMT treated animals, while non-treated TBI animals showed an increase in pathogenic bacteria, associated with inflammation and disease such in feces. FMT mediated enhanced cellular and tissue recovery resulted in improved motor function including stride and step length and voluntary motor activity in FMT treated animals. Here we report for the first time in a highly translatable pediatric piglet TBI model, the potential of FMT treatment to significantly limit cellular and tissue damage leading to improved functional outcomes following a TBI.

7.
Microorganisms ; 11(8)2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37630677

RESUMEN

This study evaluated differences in uterine microbiota composition between uterine horns ipsilateral and contralateral to the corpus luteum of beef cows on day 15 of the estrous cycle. Cows (n = 23) were exposed to an estrus synchronization protocol to exogenously induce synchronized ovulation. Cows were then euthanized on day 15 of the estrous cycle, and individual swabs were collected from uterine horns ipsilateral and contralateral to the corpus luteum using aseptic techniques. DNA was extracted, and the entire (V1-V9 hypervariable regions) 16s rRNA gene was sequenced. Sequences were analyzed, and amplicon sequence variants (ASVs) were determined. Across all samples, 2 bacterial domains, 24 phyla, and 265 genera were identified. Butyribirio, Cutibacterium, BD7-11, Bacteroidales BS11 gut group, Ruminococcus, Bacteroidales RF16 group, and Clostridia UCG-014 differed in relative abundances between uterine horns. Rikenellaceae RC9 gut group, Bacteroidales UCG-001, Lachnospiraceae AC2044 group, Burkholderia-Caballeronia-Paraburkholderia, Psudobutyribibrio, and an unidentified genus of the family Chitinophagaceae and dgA-11 gut group differed between cows that expressed estrus and those that did not. The composition of the microbial community differed between the ipsilateral and contralateral horns and between cows that expressed estrus and cows that failed to express estrus, indicating that the uterine microbiota might play a role in cow fertility.

8.
Poult Sci ; 102(8): 102789, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37354614

RESUMEN

A total of 392 Cobb 500 off-sex male broiler chicks were used in a 21-day experiment to study the effect of protease, xylanase, and xylo-oligosaccharides (XOS) on improving growth performance, nutrient utilization (ileal digestibility and total tract retention), gene expression of nutrient transporters, cecal short-chain fatty acids (SCFAs), and microbiota profile of broilers challenged with Eimeria spp. Chicks at 0-day old were allocated to 8 treatments in a 4 × 2 factorial arrangement: 1) corn-soybean meal diet with no enzyme (Con); 2) Con plus 0.2 g/kg protease alone (PRO); 3) Con plus 0.2 g/kg protease combined with 0.1 g/kg xylanase (PRO + XYL); or 4) Con plus 0.5 g/kg xylo-oligosaccharides (XOS); with or without Eimeria challenge. The 4 diets were formulated to be marginally low in crude protein (183 g/kg). Challenged groups were inoculated with a solution containing E. maxima, E. acervulina, and E. tenella oocysts on d 15. Eimeria depressed (P < 0.01) growth performance and nutrient utilization. Supplemental protease improved (P < 0.05) body weight gain and feed intake in the prechallenge phase (d 0-15) but had no effect during the infection period (d 15-21). There was no interaction between infection and feed supplementation for nutrient utilization. The supplementations of either PRO or XOS alone increased (P < 0.01) total tract retention of Ca and tended (P < 0.1) to improve total tract retention of N, P, AME, and AMEn. Eimeria decreased (P < 0.05) expressions of GLUT2, GLUT5, PepT1, ATP2B1, CaSR, Calbidin D28K, NPT2, and ZnT1 but increased (P < 0.01) expression of GLUT1. XOS supplementation increased (P < 0.05) ATP2B1 expression. Protease decreased (P < 0.05) isobutyrate concentration in unchallenged treatments but not in challenged treatments. Eimeria decreased (P < 0.01) cecal saccharolytic SCFAs acetate and propionate but increased (P < 0.01) branched-chain fatty acid isovalerate. The supplementation of PRO + XYL or XOS increased (P < 0.05) cecal butyrate or decreased cecal isobutyrate concentrations, respectively. PRO + XYL and XOS decreased cecal protein levels in unchallenged birds but not challenged ones. Eimeria challenge significantly (P < 0.05) decreased the microbial richness (Observed features) and diversity (Shannon index and phylogenetic diversity) and changed the microbial composition by reducing the abundance of certain bacteria, such as Ruminococcus torques, and increasing the abundance of others, such as Anaerostipes. In contrast, none of the additives had any significant effect on the cecal microbial composition. In conclusion, PRO or XOS supplementation individually improved nutrient utilization. All the additives decreased the cecal content of branched-chain fatty acids, consistent with decreased cecal N concentration, although the effects were more pronounced in unchallenged birds. In addition, none of the feed additives impacted the Eimeria-induced microbial perturbation.


Asunto(s)
Coccidiosis , Eimeria , Microbiota , Animales , Masculino , Suplementos Dietéticos/análisis , Pollos , Dieta con Restricción de Proteínas/veterinaria , Péptido Hidrolasas/metabolismo , Isobutiratos/metabolismo , Filogenia , Dieta/veterinaria , Endopeptidasas/metabolismo , Ácidos Grasos Volátiles/metabolismo , Oligosacáridos/farmacología , Oligosacáridos/metabolismo , Nutrientes , Alimentación Animal/análisis , Coccidiosis/veterinaria , Coccidiosis/metabolismo
9.
Toxins (Basel) ; 15(5)2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37235377

RESUMEN

Fescue toxicosis is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue (E+). Summer grazing of E+ leads to decreased productivity, associated impaired thermoregulation, and altered behavior. The goal of this study was to determine the role of E+ grazing-climate interaction on animal behavior and thermoregulation during late fall. Eighteen Angus steers were placed on nontoxic (NT), toxic (E+) and endophyte-free (E-) fescue pastures for 28 days. Physiological parameters, such as rectal temperature (RT), respiration rate (RR), ear and ankle surface temperature (ET, AT), and body weights, were measured. Skin surface temperature (SST) and animal activity were recorded continuously with temperature and behavioral activity sensors, respectively. Environmental conditions were collected using paddocks-placed data loggers. Across the trial, steers on E+ gained about 60% less weight than the other two groups. E+ steers also had higher RT than E- and NT, and lower SST than NT post-pasture placement. Importantly, animals grazing E+ spent more time lying, less time standing, and took more steps. These data suggest that late fall E+ grazing impairs core and surface temperature regulation and increases non-productive lying time, which may be partly responsible for the observed decreased weight gains.


Asunto(s)
Alcaloides de Claviceps , Festuca , Lolium , Animales , Endófitos , Alcaloides de Claviceps/toxicidad , Conducta Animal , Alimentación Animal/toxicidad , Alimentación Animal/análisis
10.
Front Microbiol ; 14: 1106604, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082176

RESUMEN

Fusarium toxins are one of the most common contaminants in poultry diets. The co-occurrence of fumonisins (FUM) and deoxynivalenol (DON), even at a subclinical dose, negatively affects the growth performance, intestinal integrity and induce subclinical necrotic enteritis in broiler chickens. Loss of gut integrity can be expected to alter the intestinal microbiota's composition. The objective of this study was to identify the effects of combined FUM and DON on the cecal microbiome profile and predicted metabolic functions and a short chain fatty acid profile in broilers challenged with Clostridium perfringens. A total of 240 1 day-old chicks were randomly assigned to two treatments: a control diet and the control diet with 3 mg/kg FUM + 4 mg/kg DON each with eight replications. All the birds were received cocci vaccine at d0. All birds in both treatment groups were challenged with C. perfringens 1 × 108 CFU via feed on d 19 and 20 to achieve 5% mortality. On d 35, the FUM and DON contaminated diet numerically (P = 0.06) decreased the body weight gain (BWG) by 84 g compared to the control group. The bacterial compositions of the cecal contents were analyzed by sequencing the V3-V4 region of the 16S rRNA gene. Overall, microbial richness and diversity increased (P < 0.02) during the studied period (d 21-35). Cecal contents of birds in the FUM + DON group had greater (P < 0.05) microbial evenness and diversity (Shannon index) compared to the control group. FUM + DON exposure decreased (P = 0.001) the relative abundance of Proteobacteria in the cecal content, compared to the control group. The combined FUM + DON significantly increased the relative abundance of the Defluviitaleaceae and Lachnospiraceae families (P < 0.05) but decreased the abundances of the Moraxellaceae and Streptococcaceae (P < 0.05) compared to the control group birds. At the genus level, FUM + DON exposure decreased (P < 0.05) Acinetobacter and Pseudomonas abundance and had a tendency (P = 0.08) to decrease Thermincola abundance compared to the control group. In the ileum, no NE-specific microscopic abnormalities were found; however, the tip of the ileal villi were compromised. The present findings showed that dietary FUM and DON contamination, even at subclinical levels, altered cecal microbial composition, dysregulated intestinal functions, and impaired the gut immune response, potentially predisposing the birds to necrotic enteritis.

11.
Sci Rep ; 13(1): 2520, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781906

RESUMEN

Impaired gut homeostasis is associated with stroke often presenting with leaky gut syndrome and increased gut, brain, and systemic inflammation that further exacerbates brain damage. We previously reported that intracisternal administration of Tanshinone IIA-loaded nanoparticles (Tan IIA-NPs) and transplantation of induced pluripotent stem cell-derived neural stem cells (iNSCs) led to enhanced neuroprotective and regenerative activity and improved recovery in a pig stroke model. We hypothesized that Tan IIA-NP + iNSC combination therapy-mediated stroke recovery may also have an impact on gut inflammation and integrity in the stroke pigs. Ischemic stroke was induced, and male Yucatan pigs received PBS + PBS (Control, n = 6) or Tan IIA-NP + iNSC (Treatment, n = 6) treatment. The Tan IIA-NP + iNSC treatment reduced expression of jejunal TNF-α, TNF-α receptor1, and phosphorylated IkBα while increasing the expression of jejunal occludin, claudin1, and ZO-1 at 12 weeks post-treatment (PT). Treated pigs had higher fecal short-chain fatty acid (SCFAs) levels than their counterparts throughout the study period, and fecal SCFAs levels were negatively correlated with jejunal inflammation. Interestingly, fecal SCFAs levels were also negatively correlated with brain lesion volume and midline shift at 12 weeks PT. Collectively, the anti-inflammatory and neuroregenerative treatment resulted in increased SCFAs levels, tight junction protein expression, and decreased inflammation in the gut.


Asunto(s)
Accidente Cerebrovascular Isquémico , Nanopartículas , Células-Madre Neurales , Accidente Cerebrovascular , Masculino , Animales , Porcinos , Factor de Necrosis Tumoral alfa , Accidente Cerebrovascular/terapia , Células-Madre Neurales/patología , Inflamación/patología , Ácidos Grasos Volátiles
12.
Stat Methods Med Res ; 32(1): 151-164, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36267026

RESUMEN

Gut microbiomes are increasingly found to be associated with many health-related characteristics of humans as well as animals. Regression with compositional microbiomes covariates is commonly used to identify important bacterial taxa that are related to various phenotype responses. Often the dimension of microbiome taxa easily exceeds the number of available samples, which creates a serious challenge in the estimation and inference of the model. The sparse log-contrast regression method is useful for such cases as it can yield a model estimate that depends on only a small number of taxa. However, a formal statistical inference procedure for individual regression coefficients has not been properly established yet. We propose a new estimation and inference procedure for linear regression models with extremely low-sample-sized compositional predictors. Under the compositional log-contrast regression framework, the proposed approach consists of two steps. The first step is to screen relevant predictors by fitting a log-contrast model with a sparse penalty. The screened-in variables are used as predictors in the non-sparse log-contrast model in the second step, where each of the regression coefficients is tested using nonparametric, resampling-based methods such as permutation and bootstrap. The performances of the proposed methods are evaluated by a simulation study, which shows they outperform traditional approaches based on normal assumptions or large sample asymptotics. Application to steer microbiome data successfully identifies key bacterial taxa that are related to important cattle quality measures.


Asunto(s)
Microbiota , Bovinos , Humanos , Animales , Simulación por Computador , Análisis de Regresión , Modelos Lineales , Tamaño de la Muestra
13.
Transl Anim Sci ; 6(4): txac118, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36249881

RESUMEN

Johnsongrass [Sorghum halepense (L.) Pers.] is a non-native, invasive species that causes substantial losses in row crops and hay fields, which could be minimized by using Johnsongrass as a conserved forage. Two experiments were conducted to evaluate the yield and quality of Johnsongrass ensiled at four maturities: harvested every 3 weeks (3WK), boot stage (BOOT), flower stage (FLOWER), and dough (DOUGH) stages. In experiment 1, yield, botanical composition, nutritive value, and fermentation characteristics of Johnsongrass were measured. In experiment 2, Johnsongrass silage was incubated for 48 h for assessment of gas production, pH, in vitro dry matter digestibility (IVDMD), and volatile fatty acids. The experimental area consisted of 16 plots (2.74 m × 4.57 m) divided into four blocks, and treatment was randomly assigned to plot within block. Each year, silage was prepared for each plot from the two cutting closest to July 1. After 10 weeks, the silos were opened, and silage samples were frozen for further analysis. Data from both experiments were tested for the effects of maturity stage and harvest timing (first and second harvest). The results from experiment 1 showed an increase (P < 0.0001) in dry matter yield from 3WK stage to DOUGH. Johnsongrass, as a proportion of the total botanical composition, declined at the end of the growing season for 3WK but increased in FLOWER (P = 0.0010). In the first harvest, 3WK and BOOT stage silages had the greatest concentrations of crude protein and total digestible nutrients and lowest of fiber (neutral detergent fiber and acid detergent fiber; P < 0.0001). In the second harvest, differences in nutrient content were significant only for 3WK silages, which showed the best nutritive value (P < 0.0001). In experiment 2, IVDMD of silage followed the same trends described for nutritive value from experiment 1. Overall, these results demonstrate that Johnsongrass can be successfully ensiled, but to optimize forage nutritive value and quantity, Johnsongrass should be ensiled before it reaches the flower stage.

14.
Front Microbiol ; 13: 984119, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225385

RESUMEN

Targeting the gastrointestinal microbiome for improvement of feed efficiency and reduction of production costs is a potential promising strategy. However little progress has been made in manipulation of the gut microbiomes in dairy cattle to improve milk yield and milk quality. Even less understood is the milk microbiome. Understanding the milk microbiome may provide insight into how the microbiota correlate with milk yield and milk quality. The objective of this study was to characterize similarities between rumen, fecal, and milk microbiota simultaneously, and to investigate associations between microbiota, milk somatic cell count (SCC), and milk yield. A total of 51 mid-lactation, multiparous Holstein dairy cattle were chosen for sampling of ruminal, fecal, and milk contents that were processed for microbial DNA extraction and sequencing. Cows were categorized based on low, medium, and high SCC; as well as low, medium, and high milk yield. Beta diversity indicated that ruminal, fecal, and milk populations were distinct (p < 0.001). Additionally, the Shannon index demonstrated that ruminal microbial populations were more diverse (p < 0.05) than were fecal and milk populations, and milk microbiota was the least diverse of all sample types (p < 0.001). While diversity indices were not linked (p > 0.1) with milk yield, milk microbial populations from cows with low SCC demonstrated a more evenly distributed microbiome in comparison to cows with high SCC values (p = 0.053). These data demonstrate the complexity of host microbiomes both in the gut and mammary gland. Further, we conclude that there is a significant relationship between mammary health (i.e., SCC) and the milk microbiome. Whether this microbiome could be utilized in efforts to protect the mammary gland remains unclear, but should be explored in future studies.

15.
Front Physiol ; 13: 912797, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36117708

RESUMEN

This study was conducted to investigate the effects of different dosages of tannic acid (TA) on growth performance, nutrient digestibility, gut health, immune system, oxidative status, microbial composition, volatile fatty acids (VFA), bone mineral density, and fat digestion and accumulation in broilers and to find optimal dosages of TA for efficient growth and gut health in broilers. A total of 320 male Cobb500 broilers were randomly distributed to 4 treatments with 8 replicates including 1) tannic acid 0 (TA0): basal diet without TA; 2) tannic acid 0.5 (TA0.5): basal diet with 0.5 g/kg TA; 3) tannic acid 1.5 (TA1.5); and 4) tannic acid 2.5 (TA2.5). Supplemental TA at levels greater than 972 mg/kg tended to reduce BW on D 21 (p = 0.05). The TA2.5 had significantly lower apparent ileal digestibility (AID) of crude protein compared to the TA0 group. The AID of ether extract tended to be reduced by TA at levels greater than 525 mg/kg (p = 0.08). The jejunal lipase activities tended to be reduced by TA at levels less than 595.3 mg/kg (p = 0.09). TA linearly decreased goblet cell density in the crypts of the jejunum (p < 0.05) and reduced mRNA expression of mucin two at levels less than 784.9 mg/kg and zonula occludens two at levels less than 892.6 mg/kg (p < 0.05). The TA0.5 group had higher activities of liver superoxide dismutase compared to the TA0 group (p < 0.05). Bone mineral density and contents tended to be linearly decreased by TA (p = 0.05), and the ratio of lean to fat was linearly decreased (p < 0.01). Total cecal VFA production tended to be linearly reduced by TA at levels greater than 850.9 mg/kg (p = 0.07). Supplemental TA tended to increase the relative abundance of the phylum Bacteroidetes (p = 0.1) and decrease the relative abundance of the phylum Proteobacteria (p = 0.1). The relative abundance of the family Rikenellaceae was the lowest at 500 mg/kg TA, and the relative abundance of the family Bacillaceae was the highest at 1,045 mg/kg TA. Collectively, these results indicate that the optimum level of supplemental TA would range between 500 and 900 mg/kg; this range of TA supplementation would improve gut health without negatively affecting growth performance in broilers under antibiotic-free conditions.

16.
Pathogens ; 11(8)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36014961

RESUMEN

The objective of this study was to identify the effects of experimental necrotic enteritis (NE) infection on the production performance, gut microbiome, and cecal tonsil transcriptome in broiler birds. A total of 192 chicks were not-induced (control) or induced with NE. NE was induced by inoculating Eimeria maxima at 14 d of age and Clostridium perfringens at 19, 20, and 21 d of age. NE challenge increased (p < 0.01) NE lesion score at 7 days post-E.maxima infection (dpi), decreased (p < 0.01) average weight gain and increased (p < 0.01) mortality at 7 and 14 dpi. NE challenge increased (p < 0.05) gut permeability at 5, 6, and 7 dpi and increased ileal C. perfringens load at 5 dpi. NE challenge increased (p < 0.01) Eimeria oocyst shedding at 5, 6, 7, 8 and 14 dpi. NE challenge decreased (p < 0.05) the relative abundance of Lactobacillaceae and increased (p < 0.05) the relative abundance of Campylobacteriaceae, Comamonadaceae, and Ruminococcaceae at 6 dpi. NE challenge upregulated (p < 0.05) genes related to immune response and downregulated (p < 0.05) genes related to lipid metabolism at 6 dpi. It can be concluded that NE infection decreased beneficial bacteria and increased gut permeability.

17.
Transl Anim Sci ; 6(3): txac098, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35959416

RESUMEN

The microbial population in the gastrointestinal tract of ruminant animals aids in the utilization of forages with high levels of secondary plant compounds. Two divergent bloodlines of meat goats have been selected by screening fecal samples with near-infrared reflectance spectroscopy to assess the goat's consumption of high or low levels of Juniperus sp. leaves containing several monoterpenes, including camphor. The mechanism by which these goats can consume greater concentrations of Juniperus spp. leaves than their counterparts is unclear, and therefore, this study was designed to determine if differences existed between the ruminal microbial populations of the low and high juniper-consuming bloodlines (LJC vs. HJC) by analyzing their ruminal microbiota and fermentation end products. In the present study, concentrations (0.00, 0.5, 0.99, 1.97, or 5.91 mM) of camphor were added to mixed ruminal microorganism fermentation. Five LJC and five HJC goats were fed a juniper-free diet (n = 10), and five LJC and five HJC goats (n = 10) were fed a diet that contained 30% fresh Juniperus ashei leaves for 21 d prior to ruminal fluid collection. In vitro fermentations used LJC and HJC, ruminal fluid inoculum added (33% v/v) to anoxic media in sealed Balch tubes. Camphor increased (P < 0.05) total short-chain fatty acid (SCFA) concentrations for all but one experimental group. Between the main dietary and bloodline goat effects, the diet was significant for all SCFA results except butyrate. In contrast, bloodline was only significant for acetate and butyrate molar proportions. Rumen fluid from juniper-free-fed goats exhibited greater concentrations of Ruminococcaceae, whereas juniper-fed goats contained more Coriobacteriaceae. Results demonstrated that mixed ruminal microorganisms fermentations from HJC goats did not produce greater concentrations of SCFAs or have the ability to degrade camphor at a higher rate than did that from LJC goats. Results suggest that camphor tolerance from J. ashei, was related to hepatic catabolic mechanisms instead of ruminal microbial degradation; however, further in vivo work is warranted.

18.
Brain Sci ; 12(8)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36009173

RESUMEN

Dynamic changes in the oral microbiome have gained attention due to their potential diagnostic role in neurological diseases such as Alzheimer's disease and Parkinson's disease. Traumatic brain injury (TBI) is a leading cause of death and disability in the United States, but no studies have examined the changes in oral microbiome during the acute stage of TBI using a clinically translational pig model. Crossbred piglets (4-5 weeks old, male) underwent either a controlled cortical impact (TBI, n = 6) or sham surgery (sham, n = 6). The oral microbiome parameters were quantified from the upper and lower gingiva, both buccal mucosa, and floor of the mouth pre-surgery and 1, 3, and 7 days post-surgery (PS) using the 16S rRNA gene. Faith's phylogenetic diversity was significantly lower in the TBI piglets at 7 days PS compared to those of sham, and beta diversity at 1, 3, and 7 days PS was significantly different between TBI and sham piglets. However, no significant changes in the taxonomic composition of the oral microbiome were observed following TBI compared to sham. Further studies are needed to investigate the potential diagnostic role of the oral microbiome during the chronic stage of TBI with a larger number of subjects.

19.
Microorganisms ; 10(7)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35889109

RESUMEN

The microorganisms inhabiting the gastrointestinal tract (GIT) of ruminants have a mutualistic relationship with the host that influences the efficiency and health of the ruminants. The GIT microbiota interacts with the host immune system to influence not only the GIT, but other organs in the body as well. The objective of this review is to highlight the importance of the role the gastrointestinal microbiota plays in modulating the health of a host through communication with different organs in the body through the microbiome-gut-organ axes. Among other things, the GIT microbiota produces metabolites for the host and prevents the colonization of pathogens. In order to prevent dysbiosis of the GIT microbiota, gut microbial therapies can be utilized to re-introduce beneficial bacteria and regain homeostasis within the rumen environment and promote gastrointestinal health. Additionally, controlling GIT dysbiosis can aid the immune system in preventing disfunction in other organ systems in the body through the microbiome-gut-brain axis, the microbiome-gut-lung axis, the microbiome-gut-mammary axis, and the microbiome-gut-reproductive axis.

20.
Microorganisms ; 10(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35744646

RESUMEN

The gastrointestinal microbiota of cattle is important for feedstuff degradation and feed efficiency determination. This study evaluated the fecal microbiome of Angus steers with distinct feed efficiencies during the feedlot-finishing phase. Angus steers (n = 65), fed a feedlot-finishing diet for 82 days, had growth performance metrics evaluated. Steers were ranked based upon residual feed intake (RFI), and the 5 lowest RFI (most efficient) and 5 highest RFI (least efficient) steers were selected for evaluation. Fecal samples were collected on 0-d and 82-d of the finishing period and microbial DNA was extracted and evaluated by 16S rRNA gene sequencing. During the feedlot trial, inefficient steers had decreased (p = 0.02) Ruminococcaceae populations and increased (p = 0.01) Clostridiaceae populations. Conversely, efficient steers had increased Peptostreptococcaceae (p = 0.03) and Turicibacteraceae (p = 0.01), and a trend for decreased Proteobacteria abundance (p = 0.096). Efficient steers had increased microbial richness and diversity during the feedlot period, which likely resulted in increased fiber-degrading enzymes in their hindgut, allowing them to extract more energy from the feed. Results suggest that cattle with better feed efficiency have greater diversity of hindgut microorganisms, resulting in more enzymes available for digestion, and improving energy harvest in the gut of efficient cattle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA