Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Behav Res Methods ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907122

RESUMEN

Magnetic resonance imaging (MRI) is a non-invasive technique that requires the participant to be completely motionless. To date, MRI in awake and unrestrained animals has only been achieved with humans and dogs. For other species, alternative techniques such as anesthesia, restraint and/or sedation have been necessary. Anatomical and functional MRI studies with sheep have only been conducted under general anesthesia. This ensures the absence of movement and allows relatively long MRI experiments but it removes the non-invasive nature of the MRI technique (i.e., IV injections, intubation). Anesthesia can also be detrimental to health, disrupt neurovascular coupling, and does not permit the study of higher-level cognition. Here, we present a proof-of-concept that sheep can be trained to perform a series of tasks, enabling them to voluntarily participate in MRI sessions without anesthesia or restraint. We describe a step-by-step training protocol based on positive reinforcement (food and praise) that could be used as a basis for future neuroimaging research in sheep. This protocol details the two successive phases required for sheep to successfully achieve MRI acquisitions of their brain. By providing structural brain MRI images from six out of ten sheep, we demonstrate the feasibility of our training protocol. This innovative training protocol paves the way for the possibility of conducting animal welfare-friendly functional MRI studies with sheep to investigate ovine cognition.

2.
Autism Res ; 17(5): 1041-1052, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38661256

RESUMEN

Research has shown that children on the autism spectrum and adults with high levels of autistic traits are less sensitive to audiovisual asynchrony compared to their neurotypical peers. However, this evidence has been limited to simultaneity judgments (SJ) which require participants to consider the timing of two cues together. Given evidence of partly divergent perceptual and neural mechanisms involved in making temporal order judgments (TOJ) and SJ, and given that SJ require a more global type of processing which may be impaired in autistic individuals, here we ask whether the observed differences in audiovisual temporal processing are task and stimulus specific. We examined the ability to detect audiovisual asynchrony in a group of 26 autistic adult males and a group of age and IQ-matched neurotypical males. Participants were presented with beep-flash, point-light drumming, and face-voice displays with varying degrees of asynchrony and asked to make SJ and TOJ. The results indicated that autistic participants were less able to detect audiovisual asynchrony compared to the control group, but this effect was specific to SJ and more complex social stimuli (e.g., face-voice) with stronger semantic correspondence between the cues, requiring a more global type of processing. This indicates that audiovisual temporal processing is not generally different in autistic individuals and that a similar level of performance could be achieved by using a more local type of processing, thus informing multisensory integration theory as well as multisensory training aimed to aid perceptual abilities in this population.


Asunto(s)
Percepción Auditiva , Trastorno Autístico , Juicio , Percepción Visual , Humanos , Masculino , Juicio/fisiología , Adulto , Percepción Visual/fisiología , Percepción Auditiva/fisiología , Adulto Joven , Trastorno Autístico/fisiopatología , Estimulación Luminosa/métodos , Señales (Psicología) , Estimulación Acústica/métodos , Percepción del Tiempo/fisiología , Adolescente
3.
Brain Struct Funct ; 227(5): 1577-1597, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35355136

RESUMEN

The structural connectivity of animal brains can be revealed using post-mortem diffusion-weighted magnetic resonance imaging (MRI). Despite the existence of several structural atlases of avian brains, few of them address the bird's structural connectivity. In this study, a novel atlas of the structural connectivity is proposed for the male Japanese quail (Coturnix japonica), aiming at investigating two lines divergent on their emotionality trait: the short tonic immobility (STI) and the long tonic immobility (LTI) lines. The STI line presents a low emotionality trait, while the LTI line expresses a high emotionality trait. 21 male Japanese quail brains from both lines were scanned post-mortem for this study, using a preclinical Bruker 11.7 T MRI scanner. Diffusion-weighted MRI was performed using a 3D segmented echo planar imaging (EPI) pulsed gradient spin-echo (PGSE) sequence with a 200 [Formula: see text]m isotropic resolution, 75 diffusion-encoding directions and a b-value fixed at 4500 s/mm2. Anatomical MRI was likewise performed using a 2D anatomical T2-weighted spin-echo (SE) sequence with a 150 [Formula: see text]m isotropic resolution. This very first anatomical connectivity atlas of the male Japanese quail reveals 34 labeled fiber tracts and the existence of structural differences between the connectivity patterns characterizing the two lines. Thus, the link between the male Japanese quail's connectivity and its underlying anatomical structures has reached a better understanding.


Asunto(s)
Coturnix , Imagen de Difusión por Resonancia Magnética , Animales , Encéfalo/diagnóstico por imagen , Imagen Eco-Planar , Masculino
4.
Dev Neurobiol ; 82(2): 214-232, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35220679

RESUMEN

The psychoendocrine evaluation of lamb development has demonstrated that maternal deprivation and milk replacement alters health, behavior, and endocrine profiles. While lambs are able to discriminate familiar and non-familiar conspecifics (mother or lamb), only lambs reared with their mother develop such clear social discrimination or preference. Lambs reared without mother display no preference for a specific lamb from its own group. Differences in exploratory and emotional behaviors between mother-reared and mother-deprived lambs have also been reported. As these behavioural abilities are supported by the brain, we hypothesize that rearing with maternal deprivation and milk replacement leads to altered brain development and maturation. To test this hypothesis, we examined brain morphometric and microstructural variables extracted from in vivo T1-weighted and diffusion-weighted magnetic resonance images acquired longitudinally (1 week, 1.5 months, and 4.5 months of age) in mother-reared and mother-deprived lambs. From the morphometric variables the caudate nuclei volume was found to be smaller for mother-deprived than for mother-reared lambs. T1-weighted signal intensity and radial diffusivity were higher for mother-deprived than for mother-reared lambs in both the white and gray matters. The fractional anisotropy of the white matter was lower for mother-deprived than for mother-reared lambs. Based on these morphometric and microstructural characteristics we conclude that maternal deprivation delays and affects lamb brain growth and maturation.


Asunto(s)
Leche , Sustancia Blanca , Animales , Imagen por Resonancia Magnética , Privación Materna , Ovinos
5.
Front Neuroanat ; 15: 778769, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095430

RESUMEN

The olive baboon (Papio anubis) is phylogenetically proximal to humans. Investigation into the baboon brain has shed light on the function and organization of the human brain, as well as on the mechanistic insights of neurological disorders such as Alzheimer's and Parkinson's. Non-invasive brain imaging, including positron emission tomography (PET) and magnetic resonance imaging (MRI), are the primary outcome measures frequently used in baboon studies. PET functional imaging has long been used to study cerebral metabolic processes, though it lacks clear and reliable anatomical information. In contrast, MRI provides a clear definition of soft tissue with high resolution and contrast to distinguish brain pathology and anatomy, but lacks specific markers of neuroreceptors and/or neurometabolites. There is a need to create a brain atlas that combines the anatomical and functional/neurochemical data independently available from MRI and PET. For this purpose, a three-dimensional atlas of the olive baboon brain was developed to enable multimodal imaging analysis. The atlas was created on a population-representative template encompassing 89 baboon brains. The atlas defines 24 brain regions, including the thalamus, cerebral cortex, putamen, corpus callosum, and insula. The atlas was evaluated with four MRI images and 20 PET images employing the radiotracers for [11C]benzamide, [11C]metergoline, [18F]FAHA, and [11C]rolipram, with and without structural aids like [18F]flurodeoxyglycose images. The atlas-based analysis pipeline includes automated segmentation, registration, quantification of region volume, the volume of distribution, and standardized uptake value. Results showed that, in comparison to PET analysis utilizing the "gold standard" manual quantification by neuroscientists, the performance of the atlas-based analysis was at >80 and >70% agreement for MRI and PET, respectively. The atlas can serve as a foundation for further refinement, and incorporation into a high-throughput workflow of baboon PET and MRI data. The new atlas is freely available on the Figshare online repository (https://doi.org/10.6084/m9.figshare.16663339), and the template images are available from neuroImaging tools & resources collaboratory (NITRC) (https://www.nitrc.org/projects/haiko89/).

6.
J Exp Psychol Hum Percept Perform ; 46(10): 1105-1117, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32718153

RESUMEN

The brain's ability to integrate information from the different senses is essential for decreasing sensory uncertainty and ultimately limiting errors. Temporal correspondence is one of the key processes that determines whether information from different senses will be integrated and is influenced by both experience- and task-dependent mechanisms in adults. Here we investigated the development of both task- and experience-dependent temporal mechanisms by testing 7-8-year-old children, 10-11-year-old children, and adults in two tasks (simultaneity judgment, temporal order judgment) using audiovisual stimuli with differing degrees of association based on prior experience (low for beep-flash vs. high for face-voice). By fitting an independent channels model to the data, we found that while the experience-dependent mechanism of audiovisual simultaneity perception is already adult-like in 10-11-year-old children, the task-dependent mechanism is still not. These results indicate that differing maturation rates of experience-dependent and task-dependent mechanisms underlie the development of multisensory integration. Understanding this development has important implications for clinical and educational interventions. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Asunto(s)
Percepción Auditiva/fisiología , Desarrollo Humano/fisiología , Desempeño Psicomotor/fisiología , Percepción del Tiempo/fisiología , Percepción Visual/fisiología , Adulto , Niño , Femenino , Humanos , Masculino , Adulto Joven
7.
Behav Brain Res ; 381: 112453, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31883949

RESUMEN

Avoidance of novelty, termed neophobia, protects animals from potential dangers but can also impair their adaptation to novel environments or food resources. This behaviour is particularly well described in birds but the neurobiological correlates remain unexplored. Here, we measured neuronal activity in the amygdala and the striatum, two brain regions believed to be involved in novelty detection, by labelling the early gene c-fos following chicks exposure to a novel food (NF), a novel object (NO) or a familiar food (FF). NF and NO chicks showed significantly longer latencies to touch the food, less time eating and emitted more fear-vocalizations than control chicks. Latency to touch the food was also longer for NO than for NF chicks. Significantly higher densities of c-fos positive cells were present in all the nuclei of the arcopallium/amygdala of NF and NO chicks compared to FF chicks. Also, NO chicks showed higher positive cell densities than NF chicks in the posterior amygdaloid, the intermediate and the medial arcopallium. Exposure to novel food or object induced a similar increase in c-fos expression in the nucleus accumbens and the medial striatum. Our data provide evidence activation of the arcopallium/amygdala is specific of the type of novelty. The activation of striatum may be more related to novelty seeking.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Reacción de Prevención/fisiología , Cuerpo Estriado/metabolismo , Conducta Exploratoria/fisiología , Alimentos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Animales , Pollos , Miedo , Masculino , Neuronas/metabolismo , Reconocimiento en Psicología
8.
Front Hum Neurosci ; 12: 274, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30018545

RESUMEN

Multisensory processing is a core perceptual capability, and the need to understand its neural bases provides a fundamental problem in the study of brain function. Both synchrony and temporal order judgments are commonly used to investigate synchrony perception between different sensory cues and multisensory perception in general. However, extensive behavioral evidence indicates that these tasks do not measure identical perceptual processes. Here we used functional magnetic resonance imaging to investigate how behavioral differences between the tasks are instantiated as neural differences. As these neural differences could manifest at either the sustained (task/state-related) and/or transient (event-related) levels of processing, a mixed block/event-related design was used to investigate the neural response of both time-scales. Clear differences in both sustained and transient BOLD responses were observed between the two tasks, consistent with behavioral differences indeed arising from overlapping but divergent neural mechanisms. Temporal order judgments, but not synchrony judgments, required transient activation in several left hemisphere regions, which may reflect increased task demands caused by an extra stage of processing. Our results highlight that multisensory integration mechanisms can be task dependent, which, in particular, has implications for the study of atypical temporal processing in clinical populations.

9.
Cereb Cortex ; 28(5): 1808-1815, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28431000

RESUMEN

The planum temporale (PT) is a critical region of the language functional network in the human brain showing a striking size asymmetry toward the left hemisphere. Historically considered as a structural landmark of the left-brain specialization for language, a similar anatomical bias has been described in great apes but never in monkeys-indicating that this brain landmark might be unique to Hominidae evolution. In the present in vivo magnetic resonance imaging study, we show clearly for the first time in a nonhominid primate species, an Old World monkey, a left size predominance of the PT among 96 olive baboons (Papio anubis), using manual delineation of this region in each individual hemisphere. This asymmetric distribution was quasi-identical to that found originally in humans. Such a finding questions the relationship between PT asymmetry and the emergence of language, indicating that the origin of this cerebral specialization could be much older than previously thought, dating back, not to the Hominidae, but rather to the Catarrhini evolution at the common ancestor of humans, great apes and Old World monkeys, 30-40 million years ago.


Asunto(s)
Mapeo Encefálico , Lateralidad Funcional/fisiología , Lenguaje , Lóbulo Temporal/fisiología , Factores de Edad , Animales , Femenino , Procesamiento de Imagen Asistido por Computador , Modelos Lineales , Imagen por Resonancia Magnética , Masculino , Papio , Lóbulo Temporal/diagnóstico por imagen
10.
Front Psychol ; 8: 1180, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28769836

RESUMEN

The ability to recognize an individual from their voice is a widespread ability with a long evolutionary history. Yet, the perceptual representation of familiar voices is ill-defined. In two experiments, we explored the neuropsychological processes involved in the perception of voice identity. We specifically explored the hypothesis that familiar voices (trained-to-familiar (Experiment 1), and famous voices (Experiment 2)) are represented as a whole complex pattern, well approximated by the average of multiple utterances produced by a single speaker. In experiment 1, participants learned three voices over several sessions, and performed a three-alternative forced-choice identification task on original voice samples and several "speaker averages," created by morphing across varying numbers of different vowels (e.g., [a] and [i]) produced by the same speaker. In experiment 2, the same participants performed the same task on voice samples produced by familiar speakers. The two experiments showed that for famous voices, but not for trained-to-familiar voices, identification performance increased and response times decreased as a function of the number of utterances in the averages. This study sheds light on the perceptual representation of familiar voices, and demonstrates the power of average in recognizing familiar voices. The speaker average captures the unique characteristics of a speaker, and thus retains the information essential for recognition; it acts as a prototype of the speaker.

11.
Brain Struct Funct ; 222(4): 2001-2015, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27709299

RESUMEN

The precise sulcogyral localization of cortical lesions is mandatory to improve communication between practitioners and to predict and prevent post-operative deficits. This process, which assumes a good knowledge of the cortex anatomy and a systematic analysis of images, is, nevertheless, sometimes neglected in the neurological and neurosurgical training. This didactic paper proposes a brief overview of the sulcogyral anatomy, using conventional MR-slices, and also reconstructions of the cortical surface after a more or less extended inflation process. This method simplifies the cortical anatomy by removing part of the cortical complexity induced by the folding process, and makes it more understandable. We then reviewed several methods for localizing cortical structures, and proposed a three-step identification: after localizing the lateral, medial or ventro-basal aspect of the hemisphere (step 1), the main interlobar sulci were located to limit the lobes (step 2). Finally, intralobar sulci and gyri were identified (step 3) thanks to the same set of rules. This paper does not propose any new identification method but should be regarded as a set of practical guidelines, useful in daily clinical practice, for detecting the main sulci and gyri of the human cortex.


Asunto(s)
Corteza Cerebral/anatomía & histología , Imagenología Tridimensional , Adulto , Corteza Cerebral/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino
12.
Neuroimage ; 132: 526-533, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26975558

RESUMEN

The baboon (Papio) brain is a remarkable model for investigating the brain. The current work aimed at creating a population-average baboon (Papio anubis) brain template and its left/right hemisphere symmetric version from a large sample of T1-weighted magnetic resonance images collected from 89 individuals. Averaging the prior probability maps output during the segmentation of each individual also produced the first baboon brain tissue probability maps for gray matter, white matter and cerebrospinal fluid. The templates and the tissue probability maps were created using state-of-the-art, freely available software tools and are being made freely and publicly available: http://www.nitrc.org/projects/haiko89/ or http://lpc.univ-amu.fr/spip.php?article589. It is hoped that these images will aid neuroimaging research of the baboon by, for example, providing a modern, high quality normalization target and accompanying standardized coordinate system as well as probabilistic priors that can be used during tissue segmentation.


Asunto(s)
Atlas como Asunto , Mapeo Encefálico/métodos , Encéfalo/anatomía & histología , Papio/anatomía & histología , Animales , Femenino , Procesamiento de Imagen Asistido por Computador , Difusión de la Información , Imagen por Resonancia Magnética , Masculino , Programas Informáticos
13.
Soc Cogn Affect Neurosci ; 10(11): 1557-67, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25925272

RESUMEN

Gaze direction, a cue of both social and spatial attention, is known to modulate early neural responses to faces e.g. N170. However, findings in the literature have been inconsistent, likely reflecting differences in stimulus characteristics and task requirements. Here, we investigated the effect of task on neural responses to dynamic gaze changes: away and toward transitions (resulting or not in eye contact). Subjects performed, in random order, social (away/toward them) and non-social (left/right) judgment tasks on these stimuli. Overall, in the non-social task, results showed a larger N170 to gaze aversion than gaze motion toward the observer. In the social task, however, this difference was no longer present in the right hemisphere, likely reflecting an enhanced N170 to gaze motion toward the observer. Our behavioral and event-related potential data indicate that performing social judgments enhances saliency of gaze motion toward the observer, even those that did not result in gaze contact. These data and that of previous studies suggest two modes of processing visual information: a 'default mode' that may focus on spatial information; a 'socially aware mode' that might be activated when subjects are required to make social judgments. The exact mechanism that allows switching from one mode to the other remains to be clarified.


Asunto(s)
Potenciales Evocados/fisiología , Movimientos Oculares/fisiología , Reconocimiento Facial/fisiología , Desempeño Psicomotor/fisiología , Percepción Social , Adulto , Atención/fisiología , Electroencefalografía , Femenino , Humanos , Masculino , Adulto Joven
14.
Cogn Affect Behav Neurosci ; 14(1): 307-18, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23943513

RESUMEN

It has been proposed that we make sense of the movements of others by observing fluctuations in the kinematic properties of their actions. At the neural level, activity in the human motion complex (hMT+) and posterior superior temporal sulcus (pSTS) has been implicated in this relationship. However, previous neuroimaging studies have largely utilized brief, diminished stimuli, and the role of relevant kinematic parameters for the processing of human action remains unclear. We addressed this issue by showing extended-duration natural displays of an actor engaged in two common activities, to 12 participants in an fMRI study under passive viewing conditions. Our region-of-interest analysis focused on three neural areas (hMT+, pSTS, and fusiform face area) and was accompanied by a whole-brain analysis. The kinematic properties of the actor, particularly the speed of body part motion and the distance between body parts, were related to activity in hMT+ and pSTS. Whole-brain exploratory analyses revealed additional areas in posterior cortex, frontal cortex, and the cerebellum whose activity was related to these features. These results indicate that the kinematic properties of peoples' movements are continually monitored during everyday activity as a step to determining actions and intent.


Asunto(s)
Encéfalo/fisiología , Percepción de Movimiento/fisiología , Fenómenos Biomecánicos , Mapeo Encefálico , Corteza Cerebral/fisiología , Femenino , Lateralidad Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Adulto Joven
15.
Iperception ; 4(4): 265-84, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24349687

RESUMEN

The superior temporal sulcus (STS) and gyrus (STG) are commonly identified to be functionally relevant for multisensory integration of audiovisual (AV) stimuli. However, most neuroimaging studies on AV integration used stimuli of short duration in explicit evaluative tasks. Importantly though, many of our AV experiences are of a long duration and ambiguous. It is unclear if the enhanced activity in audio, visual, and AV brain areas would also be synchronised over time across subjects when they are exposed to such multisensory stimuli. We used intersubject correlation to investigate which brain areas are synchronised across novices for uni- and multisensory versions of a 6-min 26-s recording of an unfamiliar, unedited Indian dance recording (Bharatanatyam). In Bharatanatyam, music and dance are choreographed together in a highly intermodal-dependent manner. Activity in the middle and posterior STG was significantly correlated between subjects and showed also significant enhancement for AV integration when the functional magnetic resonance signals were contrasted against each other using a general linear model conjunction analysis. These results extend previous studies by showing an intermediate step of synchronisation for novices: while there was a consensus across subjects' brain activity in areas relevant for unisensory processing and AV integration of related audio and visual stimuli, we found no evidence for synchronisation of higher level cognitive processes, suggesting these were idiosyncratic.

16.
PLoS One ; 8(1): e54798, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23349971

RESUMEN

BACKGROUND: Synchrony judgments involve deciding whether cues to an event are in synch or out of synch, while temporal order judgments involve deciding which of the cues came first. When the cues come from different sensory modalities these judgments can be used to investigate multisensory integration in the temporal domain. However, evidence indicates that that these two tasks should not be used interchangeably as it is unlikely that they measure the same perceptual mechanism. The current experiment further explores this issue across a variety of different audiovisual stimulus types. METHODOLOGY/PRINCIPAL FINDINGS: Participants were presented with 5 audiovisual stimulus types, each at 11 parametrically manipulated levels of cue asynchrony. During separate blocks, participants had to make synchrony judgments or temporal order judgments. For some stimulus types many participants were unable to successfully make temporal order judgments, but they were able to make synchrony judgments. The mean points of subjective simultaneity for synchrony judgments were all video-leading, while those for temporal order judgments were all audio-leading. In the within participants analyses no correlation was found across the two tasks for either the point of subjective simultaneity or the temporal integration window. CONCLUSIONS: Stimulus type influenced how the two tasks differed; nevertheless, consistent differences were found between the two tasks regardless of stimulus type. Therefore, in line with previous work, we conclude that synchrony and temporal order judgments are supported by different perceptual mechanisms and should not be interpreted as being representative of the same perceptual process.


Asunto(s)
Señales (Psicología) , Juicio/fisiología , Estimulación Acústica/psicología , Adulto , Percepción Auditiva/fisiología , Femenino , Humanos , Masculino , Estimulación Luminosa , Factores de Tiempo , Percepción del Tiempo/fisiología , Percepción Visual/fisiología , Adulto Joven
17.
Seeing Perceiving ; 24(4): 351-67, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21864459

RESUMEN

Perception of faces and voices plays a prominent role in human social interaction, making multisensory integration of cross-modal speech a topic of great interest in cognitive neuroscience. How to define potential sites of multisensory integration using functional magnetic resonance imaging (fMRI) is currently under debate, with three statistical criteria frequently used (e.g., super-additive, max and mean criteria). In the present fMRI study, 20 participants were scanned in a block design under three stimulus conditions: dynamic unimodal face, unimodal voice and bimodal face-voice. Using this single dataset, we examine all these statistical criteria in an attempt to define loci of face-voice integration. While the super-additive and mean criteria essentially revealed regions in which one of the unimodal responses was a deactivation, the max criterion appeared stringent and only highlighted the left hippocampus as a potential site of face- voice integration. Psychophysiological interaction analysis showed that connectivity between occipital and temporal cortices increased during bimodal compared to unimodal conditions. We concluded that, when investigating multisensory integration with fMRI, all these criteria should be used in conjunction with manipulation of stimulus signal-to-noise ratio and/or cross-modal congruency.


Asunto(s)
Percepción Auditiva/fisiología , Corteza Cerebral/fisiología , Percepción de Forma/fisiología , Imagen por Resonancia Magnética , Reconocimiento Visual de Modelos/fisiología , Voz , Estimulación Acústica/métodos , Adulto , Femenino , Humanos , Masculino , Estimulación Luminosa/métodos , Psicofísica , Relación Señal-Ruido , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...