Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(12): 6726-6739, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32449932

RESUMEN

Developing lymphocytes of jawed vertebrates cleave and combine distinct gene segments to assemble antigen-receptor genes. This process called V(D)J recombination that involves the RAG recombinase binding and cutting recombination signal sequences (RSSs) composed of conserved heptamer and nonamer sequences flanking less well-conserved 12- or 23-bp spacers. Little quantitative information is known about the contributions of individual RSS positions over the course of the RAG-RSS interaction. We employ a single-molecule method known as tethered particle motion to track the formation, lifetime and cleavage of individual RAG-12RSS-23RSS paired complexes (PCs) for numerous synthetic and endogenous 12RSSs. We reveal that single-bp changes, including in the 12RSS spacer, can significantly and selectively alter PC formation or the probability of RAG-mediated cleavage in the PC. We find that some rarely used endogenous gene segments can be mapped directly to poor RAG binding on their adjacent 12RSSs. Finally, we find that while abrogating RSS nicking with Ca2+ leads to substantially shorter PC lifetimes, analysis of the complete lifetime distributions of any 12RSS even on this reduced system reveals that the process of exiting the PC involves unidentified molecular details whose involvement in RAG-RSS dynamics are crucial to quantitatively capture kinetics in V(D)J recombination.


Asunto(s)
Conformación de Ácido Nucleico , Señales de Clasificación de Proteína/genética , Receptores de Antígenos/genética , Recombinación V(D)J/genética , Animales , División del ADN , Linfocitos/metabolismo , Imagen Individual de Molécula , Vertebrados/genética , Vertebrados/crecimiento & desarrollo
2.
Genes Dev ; 30(8): 873-5, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27083993

RESUMEN

Generation of a diverse repertoire of antigen receptor specificities via DNA recombination underpins adaptive immunity. In this issue ofGenes&Development, Carmona and colleagues (pp. 909-917) provide novel insights into the origin and function of recombination-activating gene 1 (RAG1) and RAG2, the lymphocyte-specific components of the recombinase involved in the process.


Asunto(s)
Inmunidad Adaptativa/fisiología , Inmunidad Adaptativa/genética , Inmunidad Adaptativa/inmunología , Animales , Proteínas de Unión al ADN/inmunología , Proteínas de Homeodominio/inmunología , Humanos , VDJ Recombinasas/genética , VDJ Recombinasas/metabolismo
3.
Proc Natl Acad Sci U S A ; 112(14): E1715-23, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25831509

RESUMEN

The recombination-activating gene products, RAG1 and RAG2, initiate V(D)J recombination during lymphocyte development by cleaving DNA adjacent to conserved recombination signal sequences (RSSs). The reaction involves DNA binding, synapsis, and cleavage at two RSSs located on the same DNA molecule and results in the assembly of antigen receptor genes. We have developed single-molecule assays to examine RSS binding by RAG1/2 and their cofactor high-mobility group-box protein 1 (HMGB1) as they proceed through the steps of this reaction. These assays allowed us to observe in real time the individual molecular events of RAG-mediated cleavage. As a result, we are able to measure the binding statistics (dwell times) and binding energies of the initial RAG binding events and characterize synapse formation at the single-molecule level, yielding insights into the distribution of dwell times in the paired complex and the propensity for cleavage on forming the synapse. Interestingly, we find that the synaptic complex has a mean lifetime of roughly 400 s and that its formation is readily reversible, with only ∼40% of observed synapses resulting in cleavage at consensus RSS binding sites.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/química , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares/metabolismo , Recombinación V(D)J , Células HEK293 , Proteína HMGB1/metabolismo , Humanos , Sinapsis Inmunológicas/metabolismo , Movimiento (Física) , Mutación , Distribución Normal , Unión Proteica , Receptores de Antígenos/genética
4.
Nat Commun ; 5: 3077, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24435062

RESUMEN

TFAM (transcription factor A, mitochondrial) is a DNA-binding protein that activates transcription at the two major promoters of mitochondrial DNA (mtDNA)--the light strand promoter (LSP) and the heavy strand promoter 1 (HSP1). Equally important, it coats and packages the mitochondrial genome. TFAM has been shown to impose a U-turn on LSP DNA; however, whether this distortion is relevant at other sites is unknown. Here we present crystal structures of TFAM bound to HSP1 and to nonspecific DNA. In both, TFAM similarly distorts the DNA into a U-turn. Yet, TFAM binds to HSP1 in the opposite orientation from LSP explaining why transcription from LSP requires DNA bending, whereas transcription at HSP1 does not. Moreover, the crystal structures reveal dimerization of DNA-bound TFAM. This dimerization is dispensable for DNA bending and transcriptional activation but is important in DNA compaction. We propose that TFAM dimerization enhances mitochondrial DNA compaction by promoting looping of the DNA.


Asunto(s)
Empaquetamiento del ADN/fisiología , ADN Mitocondrial/química , ADN Mitocondrial/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Activación Transcripcional/fisiología , Secuencia de Bases , Cristalización , ADN/química , ADN/genética , ADN/fisiología , ADN Mitocondrial/fisiología , Proteínas de Unión al ADN/fisiología , Dimerización , Humanos , Proteínas Mitocondriales/fisiología , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , Conformación Proteica , Análisis de Secuencia de ADN , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...