Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Front Neurol ; 15: 1392977, 2024.
Article En | MEDLINE | ID: mdl-38872822

Patients with epilepsy are prone to cognitive decline, depression, anxiety and other behavioral disorders. Cognitive comorbidities are particularly common and well-characterized in people with temporal lobe epilepsy, while inconsistently addressed in epileptic animals. Therefore, the aim of this study was to ascertain whether there is good evidence of cognitive comorbidities in animal models of epilepsy, in particular in the rat pilocarpine model of temporal lobe epilepsy. We searched the literature published between 1990 and 2023. The association of spontaneous recurrent seizures induced by pilocarpine with cognitive alterations has been evaluated by using various tests: contextual fear conditioning (CFC), novel object recognition (NOR), radial and T-maze, Morris water maze (MWM) and their variants. Combination of results was difficult because of differences in methodological standards, in number of animals employed, and in outcome measures. Taken together, however, the analysis confirmed that pilocarpine-induced epilepsy has an effect on cognition in rats, and supports the notion that this is a valid model for assessment of cognitive temporal lobe epilepsy comorbidities in preclinical research.

2.
Eur J Pharmacol ; 901: 174068, 2021 Jun 15.
Article En | MEDLINE | ID: mdl-33798600

Innovative therapeutic strategies are highly needed to tackle the major medical needs of epilepsy, like prevention of epilepsy development in at-risk individuals, treatment of severe and drug-resistant forms, control of co-morbidities. The Neural Regeneration Peptide NRP2945 (a peptidomimetic analogue of the human CAPS-2 protein) has been recently found to exert many potentially anti-epileptic effects, for example increased neuronal survival and differentiation. In the present study, we tested the effects of NRP2945 on the development of epilepsy (epileptogenesis) and on chronic, spontaneous seizures, by using the pilocarpine model of temporal lobe epilepsy. We found that NRP2945 exerts a robust anti-epileptogenic effect, reducing the frequency of spontaneous seizures, exerting a significant neuroprotective effect and attenuating anxiety-like behaviors and cognitive impairment. These effects appear to depend on modulation of the epileptogenesis process and not on seizure suppression, because NRP2945 did not reduce frequency or duration of spontaneous seizures when administered to already epileptic animals. These findings may form the basis for a preventive therapy for individuals at-risk of developing epilepsy.


Anticonvulsants/therapeutic use , Epilepsy, Temporal Lobe/drug therapy , Oligopeptides/therapeutic use , Animals , Anxiety/drug therapy , Anxiety/psychology , Behavior, Animal/drug effects , Convulsants/therapeutic use , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/psychology , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Pilocarpine , Rats , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Seizures/drug therapy , Seizures/etiology
3.
Brain Commun ; 3(1): fcaa130, 2021.
Article En | MEDLINE | ID: mdl-33758823

Epilepsy is a serious neurological disorder affecting about 1% of the population worldwide. Epilepsy may arise as a result of acquired brain injury, or as a consequence of genetic predisposition. To date, genome-wide association studies and exome sequencing approaches have provided limited insights into the mechanisms of acquired brain injury. We have previously reported a pro-epileptic gene network, which is conserved across species, encoding inflammatory processes and positively regulated by sestrin3 (SESN3). In this study, we investigated the phenotype of SESN3 knock-out rats in terms of susceptibility to seizures and observed a significant delay in status epilepticus onset in SESN3 knock-out compared to control rats. This finding confirms previous in vitro and in vivo evidence indicating that SESN3 may favour occurrence and/or severity of seizures. We also analysed the phenotype of SESN3 knock-out rats for common comorbidities of epilepsy, i.e., anxiety, depression and cognitive impairment. SESN3 knock-out rats proved less anxious compared to control rats in a selection of behavioural tests. Taken together, the present results suggest that SESN3 may regulate mechanisms involved in the pathogenesis of epilepsy and its comorbidities.

4.
Epilepsy Behav ; 121(Pt B): 106488, 2021 08.
Article En | MEDLINE | ID: mdl-31494060

Neurobiology research has used an essentially reductionist approach for many years, dissecting out the brain in more simple elements. Recent technical advances, like systems biology, have made now possible to embrace a more holistic vision and try to tackle the complexity of the system. In this short review, we describe how these approaches, in particular analyses or gene networks and of microRNAs, may be useful for epilepsy research. We will describe and discuss recent studies that illustrate how these research approaches can lead to the identification of therapeutic targets and pharmacological strategies to prevent or treat some forms of epilepsy. We aim to show that studying epilepsy and its comorbidities within a complex system framework is a promising integration to the traditional reductionist approaches, and that it will become more and more important in the future for developing new therapies. This article is part of the Special Issue "NEWroscience 2018."


Epilepsy , MicroRNAs , Brain , Comorbidity , Epilepsy/epidemiology , Epilepsy/genetics , Epilepsy/therapy , Gene Regulatory Networks , Humans , MicroRNAs/genetics
5.
J Neurosci ; 39(11): 2144-2156, 2019 03 13.
Article En | MEDLINE | ID: mdl-30665947

Neurotrophic factors are candidates for treating epilepsy, but their development has been hampered by difficulties in achieving stable and targeted delivery of efficacious concentrations within the desired brain region. We have developed an encapsulated cell technology that overcomes these obstacles by providing a targeted, continuous, de novo synthesized source of high levels of neurotrophic molecules from human clonal ARPE-19 cells encapsulated into hollow fiber membranes. Here we illustrate the potential of this approach for delivering glial cell line-derived neurotrophic factor (GDNF) directly to the hippocampus of epileptic rats. In vivo studies demonstrated that bilateral intrahippocampal implants continued to secrete GDNF that produced high hippocampal GDNF tissue levels in a long-term manner. Identical implants robustly reduced seizure frequency in the pilocarpine model. Seizures were reduced rapidly, and this effect increased in magnitude over 3 months, ultimately leading to a reduction of seizures by 93%. This effect persisted even after device removal, suggesting potential disease-modifying benefits. Importantly, seizure reduction was associated with normalized changes in anxiety and improved cognitive performance. Immunohistochemical analyses revealed that the neurological benefits of GDNF were associated with the normalization of anatomical alterations accompanying chronic epilepsy, including hippocampal atrophy, cell degeneration, loss of parvalbumin-positive interneurons, and abnormal neurogenesis. These effects were associated with the activation of GDNF receptors. All in all, these results support the concept that the implantation of encapsulated GDNF-secreting cells can deliver GDNF in a sustained, targeted, and efficacious manner, paving the way for continuing preclinical evaluation and eventual clinical translation of this approach for epilepsy.SIGNIFICANCE STATEMENT Epilepsy is one of the most common neurological conditions, affecting millions of individuals of all ages. These patients experience debilitating seizures that frequently increase over time and can associate with significant cognitive decline and psychiatric disorders that are generally poorly controlled by pharmacotherapy. We have developed a clinically validated, implantable cell encapsulation system that delivers high and consistent levels of GDNF directly to the brain. In epileptic animals, this system produced a progressive and permanent reduction (>90%) in seizure frequency. These benefits were accompanied by improvements in cognitive and anxiolytic behavior and the normalization of changes in CNS anatomy that underlie chronic epilepsy. Together, these data suggest a novel means of tackling the frequently intractable neurological consequences of this devastating disorder.


Epilepsy/drug therapy , Glial Cell Line-Derived Neurotrophic Factor/administration & dosage , Neuroprotective Agents/administration & dosage , Seizures/drug therapy , Animals , Cell Encapsulation , Cell Line , Drug Delivery Systems/methods , Epilepsy/chemically induced , Humans , Male , Pilocarpine/administration & dosage , Rats, Sprague-Dawley , Seizures/chemically induced
6.
J Vis Exp ; (141)2018 11 08.
Article En | MEDLINE | ID: mdl-30474642

Microdialysis is a well-established neuroscience technique that correlates the changes of neurologically active substances diffusing into the brain interstitial space with the behavior and/or with the specific outcome of a pathology (e.g., seizures for epilepsy). When studying epilepsy, the microdialysis technique is often combined with short-term or even long-term video-electroencephalography (EEG) monitoring to assess spontaneous seizure frequency, severity, progression and clustering. The combined microdialysis-EEG is based on the use of several methods and instruments. Here, we performed in vivo microdialysis and continuous video-EEG recording to monitor glutamate and aspartate outflow over time, in different phases of the natural history of epilepsy in a rat model. This combined approach allows the pairing of changes in the neurotransmitter release with specific stages of the disease development and progression. The amino acid concentration in the dialysate was determined by liquid chromatography. Here, we describe the methods and outline the principal precautionary measures one should take during in vivo microdialysis-EEG, with particular attention to the stereotaxic surgery, basal and high potassium stimulation during microdialysis, depth electrode EEG recording and high-performance liquid chromatography analysis of aspartate and glutamate in the dialysate. This approach may be adapted to test a variety of drug or disease induced changes of the physiological concentrations of aspartate and glutamate in the brain. Depending on the availability of an appropriate analytical assay, it may be further used to test different soluble molecules when employing EEG recording at the same time.


Electroencephalography/methods , Excitatory Amino Acids/metabolism , Microdialysis/methods , Animals , Male , Rats
7.
Mol Ther Methods Clin Dev ; 9: 211-224, 2018 Jun 15.
Article En | MEDLINE | ID: mdl-29766029

Brain-derived neurotrophic factor (BDNF) may represent a therapeutic for chronic epilepsy, but evaluating its potential is complicated by difficulties in its delivery to the brain. Here, we describe the effects on epileptic seizures of encapsulated cell biodelivery (ECB) devices filled with genetically modified human cells engineered to release BDNF. These devices, implanted into the hippocampus of pilocarpine-treated rats, highly decreased the frequency of spontaneous seizures by more than 80%. These benefits were associated with improved cognitive performance, as epileptic rats treated with BDNF performed significantly better on a novel object recognition test. Importantly, long-term BDNF delivery did not alter normal behaviors such as general activity or sleep/wake patterns. Detailed immunohistochemical analyses revealed that the neurological benefits of BDNF were associated with several anatomical changes, including reduction in degenerating cells and normalization of hippocampal volume, neuronal counts (including parvalbumin-positive interneurons), and neurogenesis. In conclusion, the present data suggest that BDNF, when continuously released in the epileptic hippocampus, reduces the frequency of generalized seizures, improves cognitive performance, and reverts many histological alterations associated with chronic epilepsy. Thus, ECB device-mediated long-term supplementation of BDNF in the epileptic tissue may represent a valid therapeutic strategy against epilepsy and some of its co-morbidities.

...