Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Res ; 1689: 1-11, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29274875

RESUMEN

The multimodal antidepressant vortioxetine is thought to mediate its pharmacological effects via 5-HT1A receptor agonism, 5-HT1B receptor partial agonism, 5-HT1D, 5-HT3, 5-HT7 receptor antagonism and 5-HT transporter inhibition. Here we studied vortioxetine's functional effects across species (canine, mouse, rat, guinea pig and human) in cellular assays with heterologous expression of 5-HT3A receptors (in Xenopus oocytes and HEK-293 cells) and in mouse neuroblastoma N1E-115 cells with endogenous expression of 5-HT3A receptors. Furthermore, we studied the effects of vortioxetine on activity of CA1 Stratum Radiatum interneurons in rat hippocampus slices using current- and voltage-clamping methods. The patched neurons were subsequently filled with biocytin for confirmation of 5-HT3 receptor mRNA expression by in situ hybridization. Whereas, both vortioxetine and the 5-HT3 receptor antagonist ondansetron potently antagonized 5-HT-induced currents in the cellular assays, vortioxetine had a slower off-rate than ondansetron in oocytes expressing 5-HT3A receptors. Furthermore, vortioxetine's but not ondansetron's 5-HT3 receptor antagonistic potency varied considerably across species. Vortioxetine had the highest potency at rat and the lowest potency at guinea pig 5-HT3A receptors. Finally, in 5-HT3 receptor-expressing GABAergic interneurons from the CA1 stratum radiatum, vortioxetine and ondansetron blocked depolarizations induced by superfusion of either 5-HT or the 5-HT3 receptor agonist mCPBG. Taken together, these data add to a growing literature supporting the idea that vortioxetine may inhibit GABAergic neurotransmission in some brain regions via a 5-HT3 receptor antagonism-dependent mechanism and thereby disinhibit pyramidal neurons and enhance glutamatergic signaling.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Antidepresivos/farmacología , Interneuronas/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Antagonistas del Receptor de Serotonina 5-HT3/farmacología , Vortioxetina/farmacología , Potenciales de Acción/fisiología , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Perros , Ácido Glutámico/metabolismo , Cobayas , Células HEK293 , Humanos , Interneuronas/metabolismo , Ratones , Ondansetrón/farmacología , Oocitos , Células Piramidales/metabolismo , Ratas , Receptores de Serotonina 5-HT3/metabolismo , Serotonina/metabolismo , Técnicas de Cultivo de Tejidos , Xenopus laevis , Ácido gamma-Aminobutírico/metabolismo
2.
Eur J Neurosci ; 46(3): 1887-1896, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28635024

RESUMEN

Nav 1.1 (SCN1A) channels primarily located in gamma-aminobutyric acid (GABA)ergic fast-spiking interneurons are pivotal for action potential generation and propagation in these neurons. Inappropriate function of fast-spiking interneurons, leading to disinhibition of pyramidal cells and network desynchronization, correlates with decreased cognitive capability. Further, reduced functionality of Nav 1.1 channels is linked to various diseases in the central nervous system. There is, at present, however no subtype selective pharmacological activators of Nav 1.1 channels available for studying pharmacological modulation of interneuron function. In the current study, we identified a small molecule Nav 1.1 activator, 3-amino-5-(4-methoxyphenyl)thiophene-2-carboxamide, named AA43279, and provided an in vitro to in vivo characterization of the compound. In HEK-293 cells expressing human Nav 1.1 channels, AA43279 increased the Nav 1.1-mediated current in a concentration-dependent manner mainly by impairing the fast inactivation kinetics of the channels. In rat hippocampal brain slices, AA43279 increased the firing activity of parvalbumin-expressing, fast-spiking GABAergic interneurons and increased the spontaneous inhibitory post-synaptic currents (sIPSCs) recorded from pyramidal neurons. When tested in vivo, AA43279 had anti-convulsive properties in the maximal electroshock seizure threshold test. AA43279 was tested for off-target effects on 72 different proteins, including Nav 1.2, Nav 1.4, Nav 1.5, Nav 1.6 and Nav 1.7 and exhibited reasonable selectivity. Taken together, AA43279 might constitute a valuable tool compound for revealing biological functions of Nav 1.1 channels.


Asunto(s)
Anticonvulsivantes/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Interneuronas/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Convulsiones/tratamiento farmacológico , Bloqueadores de los Canales de Sodio/farmacología , Tiofenos/farmacología , Potenciales de Acción , Animales , Anticonvulsivantes/síntesis química , Anticonvulsivantes/uso terapéutico , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiología , Potenciales Postsinápticos Excitadores , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Células HEK293 , Humanos , Interneuronas/metabolismo , Interneuronas/fisiología , Masculino , Ratones , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/síntesis química , Bloqueadores de los Canales de Sodio/uso terapéutico
3.
EMBO Rep ; 17(5): 682-94, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27113760

RESUMEN

Sonic hedgehog (Shh), both as a mitogen and as a morphogen, plays an important role in cell proliferation and differentiation during early development. Here, we show that Shh inhibits glutamate transporter activities in neurons, rapidly enhances extracellular glutamate levels, and affects the development of epilepsy. Shh is quickly released in response to epileptic, but not physiological, stimuli. Inhibition of neuronal glutamate transporters by Shh depends on heterotrimeric G protein subunit Gαi and enhances extracellular glutamate levels. Inhibiting Shh signaling greatly reduces epileptiform activities in both cell cultures and hippocampal slices. Moreover, pharmacological or genetic inhibition of Shh signaling markedly suppresses epileptic phenotypes in kindling or pilocarpine models. Our results suggest that Shh contributes to the development of epilepsy and suppression of its signaling prevents the development of the disease. Thus, Shh can act as a modulator of neuronal activity, rapidly regulating glutamate levels and promoting epilepsy.


Asunto(s)
Epilepsia/metabolismo , Ácido Glutámico/metabolismo , Proteínas Hedgehog/metabolismo , Neuronas/metabolismo , Animales , Calcio/metabolismo , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Espacio Extracelular , Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Hipocampo/metabolismo , Masculino , Ratones , Ratones Noqueados , Células Piramidales/metabolismo , Ratas , Transducción de Señal , Proteína con Dedos de Zinc GLI1/metabolismo
4.
ACS Chem Neurosci ; 6(8): 1302-8, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26114759

RESUMEN

Voltage-gated sodium channels (Nav) are crucial to the initiation and propagation of action potentials (APs) in electrically excitable cells, and during the past decades they have received considerable attention due to their therapeutic potential. Here, we report for the first time the synthesis and the electrophysiological evaluation of 16 ligands based on a 2-methylbenzamide scaffold that have been identified as Nav1.1 modulators. Among these compounds, N,N'-(1,3-phenylene)bis(2-methylbenzamide) (3a) has been selected and evaluated in ex-vivo experiments in order to estimate the activation impact of such a compound profile. It appears that 3a increases the Nav1.1 channel activity although its overall impact remains moderate. Altogether, our preliminary results provide new insights into the development of small molecule activators targeting specifically Nav1.1 channels to design potential drugs for treating CNS diseases.


Asunto(s)
Benzamidas/química , Moduladores del Transporte de Membrana/farmacología , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/fisiología , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Potenciales de la Membrana/efectos de los fármacos , Moduladores del Transporte de Membrana/síntesis química , Moduladores del Transporte de Membrana/química , Estructura Molecular , Ratas , Técnicas de Cultivo de Tejidos
5.
J Psychopharmacol ; 28(10): 891-902, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25122043

RESUMEN

Vortioxetine, a novel antidepressant with multimodal action, is a serotonin (5-HT)3, 5-HT7 and 5-HT1D receptor antagonist, a 5-HT1B receptor partial agonist, a 5-HT1A receptor agonist and a 5-HT transporter (SERT) inhibitor. Vortioxetine has been shown to improve cognitive performance in several preclinical rat models and in patients with major depressive disorder. Here we investigated the mechanistic basis for these effects by studying the effect of vortioxetine on synaptic transmission, long-term potentiation (LTP), a cellular correlate of learning and memory, and theta oscillations in the rat hippocampus and frontal cortex. Vortioxetine was found to prevent the 5-HT-induced increase in inhibitory post-synaptic potentials recorded from CA1 pyramidal cells, most likely by 5-HT3 receptor antagonism. Vortioxetine also enhanced LTP in the CA1 region of the hippocampus. Finally, vortioxetine increased fronto-cortical theta power during active wake in whole animal electroencephalographic recordings. In comparison, the selective SERT inhibitor escitalopram showed no effect on any of these measures. Taken together, our results indicate that vortioxetine can increase pyramidal cell output, which leads to enhanced synaptic plasticity in the hippocampus. Given the central role of the hippocampus in cognition, these findings may provide a cellular correlate to the observed preclinical and clinical cognition-enhancing effects of vortioxetine.


Asunto(s)
Región CA1 Hipocampal/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Piperazinas/farmacología , Células Piramidales/efectos de los fármacos , Sulfuros/farmacología , Animales , Antidepresivos/farmacología , Región CA1 Hipocampal/fisiología , Citalopram/farmacología , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/fisiología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Ratas , Serotonina/farmacología , Antagonistas de la Serotonina/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Ritmo Teta/efectos de los fármacos , Ritmo Teta/fisiología , Vortioxetina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...