Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nature ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39322678

RESUMEN

L-lactate modifies proteins through lactylation1, but how this process occurs is unclear. Here we identify the alanyl-tRNA synthetases AARS1 and AARS2 (AARS1/2) as intracellular L-lactate sensors required for L-lactate to stimulate the lysine lactylome in cells. AARS1/2 and the evolutionarily conserved Escherichia coli orthologue AlaRS bind to L-lactate with micromolar affinity and they directly catalyse L-lactate for ATP-dependent lactylation on the lysine acceptor end. In response to L-lactate, AARS2 associates with cyclic GMP-AMP synthase (cGAS) and mediates its lactylation and inactivation in cells and in mice. By establishing a genetic code expansion orthogonal system for lactyl-lysine incorporation, we demonstrate that the presence of a lactyl moiety at a specific cGAS amino-terminal site abolishes cGAS liquid-like phase separation and DNA sensing in vitro and in vivo. A lactyl mimetic knock-in inhibits cGAS, whereas a lactyl-resistant knock-in protects mice against innate immune evasion induced through high levels of L-lactate. MCT1 blockade inhibits cGAS lactylation in stressed mice and restores innate immune surveillance, which in turn antagonizes viral replication. Thus, AARS1/2 are conserved intracellular L-lactate sensors and have an essential role as lactyltransferases. Moreover, a chemical reaction process of lactylation targets and inactivates cGAS.

2.
Mol Biol Rep ; 51(1): 703, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822881

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer morbidity and mortality worldwide, and new diagnostic markers are urgently needed. We aimed to investigate the mechanism by which hsa_circ_0096157 regulates autophagy and cisplatin (DDP) resistance in NSCLC. METHODS: A549 cells were treated with DDP (0 µg/mL or 3 µg/mL). Then, the autophagy activator rapamycin (200 nm) was applied to the A549/DDP cells. Moreover, hsa_circ_0096157 and Nrf2 were knocked down, and Nrf2 was overexpressed in A549/DDP cells. The expression of Hsa_circ_0096157, the Nrf2/ARE pathway-related factors Nrf2, HO-1, and NQO1, and the autophagy-related factors LC3, Beclin-1, and p62 was evaluated by qRT‒PCR or western blotting. Autophagosomes were detected through TEM. An MTS assay was utilized to measure cell proliferation. The associated miRNA levels were also tested by qRT‒PCR. RESULTS: DDP (3 µg/mL) promoted hsa_circ_0096157, LC3 II/I, and Beclin-1 expression and decreased p62 expression. Knocking down hsa_circ_0096157 resulted in the downregulation of LC3 II/I and Beclin-1 expression, upregulation of p62 expression, and decreased proliferation. Rapamycin reversed the effect of interfering with hsa_circ_0096157. Keap1 expression was lower, and Nrf2, HO-1, and NQO1 expression was greater in the A549/DDP group than in the A549 group. HO-1 expression was repressed after Nrf2 interference. In addition, activation of the Nrf2/ARE pathway promoted autophagy in A549/DDP cells. Moreover, hsa_circ_0096157 activated the Nrf2/ARE pathway. The silencing of hsa_circ_0096157 reduced Nrf2 expression by releasing miR-142-5p or miR-548n. Finally, we found that hsa_circ_0096157 promoted A549/DDP cell autophagy by activating the Nrf2/ARE pathway. CONCLUSION: Knockdown of hsa_circ_0096157 inhibits autophagy and DDP resistance in NSCLC cells by downregulating the Nrf2/ARE signaling pathway.


Asunto(s)
Autofagia , Carcinoma de Pulmón de Células no Pequeñas , Cisplatino , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Humanos , Cisplatino/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Células A549 , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Línea Celular Tumoral , Elementos de Respuesta Antioxidante/genética , Antineoplásicos/farmacología , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo
3.
Nat Cell Biol ; 26(1): 86-99, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172614

RESUMEN

The Hippo pathway has important roles in organ development, tissue homeostasis and tumour growth. Its downstream effector TAZ is a transcriptional coactivator that promotes target gene expression through the formation of biomolecular condensates. However, the mechanisms that regulate the biophysical properties of TAZ condensates to enable Hippo signalling are not well understood. Here using chemical crosslinking combined with an unbiased proteomics approach, we show that FUS associates with TAZ condensates and exerts a chaperone-like effect to maintain their proper liquidity and robust transcriptional activity. Mechanistically, the low complexity sequence domain of FUS targets the coiled-coil domain of TAZ in a phosphorylation-regulated manner, which ensures the liquidity and dynamicity of TAZ condensates. In cells lacking FUS, TAZ condensates transition into gel-like or solid-like assembles with immobilized TAZ, which leads to reduced expression of target genes and inhibition of pro-tumorigenic activity. Thus, our findings identify a chaperone-like function of FUS in Hippo regulation and demonstrate that appropriate biophysical properties of transcriptional condensates are essential for gene activation.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Transactivadores , Transactivadores/genética , Transactivadores/metabolismo , Activación Transcripcional , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Línea Celular Tumoral
4.
J Mol Cell Biol ; 15(7)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407287

RESUMEN

Lesions on the DNA template can impact transcription via distinct regulatory pathways. Ionizing radiation (IR) as the mainstay modality for many malignancies elicits most of the cytotoxicity by inducing a variety of DNA damages in the genome. How the IR treatment alters the transcription cycle and whether it contributes to the development of radioresistance remain poorly understood. Here, we report an increase in the paused RNA polymerase II (RNAPII), as indicated by the phosphorylation at serine 5 residue of its C-terminal domain, in recurrent nasopharyngeal carcinoma (NPC) patient samples after IR treatment and cultured NPC cells developing IR resistance. Reducing the pool of paused RNAPII by either inhibiting TFIIH-associated CDK7 or stimulating the positive transcription elongation factor b, a CDK9-CycT1 heterodimer, attenuates IR resistance of NPC cells. Interestingly, the poly(ADP-ribosyl)ation of CycT1, which disrupts its phase separation, is elevated in the IR-resistant cells. Mutation of the major poly(ADP-ribosyl)ation sites of CycT1 decreases RNAPII pausing and restores IR sensitivity. Genome-wide chromatin immunoprecipitation followed by sequencing analyses reveal that several genes involved in radiation response and cell cycle control are subject to the regulation imposed by the paused RNAPII. Particularly, we identify the NIMA-related kinase NEK7 under such regulation as a new radioresistance factor, whose downregulation results in the increased chromosome instability, enabling the development of IR resistance. Overall, our results highlight a novel link between the alteration in the transcription cycle and the acquisition of IR resistance, opening up new opportunities to increase the efficacy of radiotherapy and thwart radioresistance in NPC.


Asunto(s)
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/patología , Línea Celular Tumoral , Radiación Ionizante , ADN
5.
Nature ; 621(7979): 610-619, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37557913

RESUMEN

The proper regulation of transcription is essential for maintaining genome integrity and executing other downstream cellular functions1,2. Here we identify a stable association between the genome-stability regulator sensor of single-stranded DNA (SOSS)3 and the transcription regulator Integrator-PP2A (INTAC)4-6. Through SSB1-mediated recognition of single-stranded DNA, SOSS-INTAC stimulates promoter-proximal termination of transcription and attenuates R-loops associated with paused RNA polymerase II to prevent R-loop-induced genome instability. SOSS-INTAC-dependent attenuation of R-loops is enhanced by the ability of SSB1 to form liquid-like condensates. Deletion of NABP2 (encoding SSB1) or introduction of cancer-associated mutations into its intrinsically disordered region leads to a pervasive accumulation of R-loops, highlighting a genome surveillance function of SOSS-INTAC that enables timely termination of transcription at promoters to constrain R-loop accumulation and ensure genome stability.


Asunto(s)
Inestabilidad Genómica , Regiones Promotoras Genéticas , Estructuras R-Loop , Terminación de la Transcripción Genética , Humanos , ADN de Cadena Simple/metabolismo , Inestabilidad Genómica/genética , Mutación , Estructuras R-Loop/genética , ARN Polimerasa II/metabolismo , Regiones Promotoras Genéticas/genética , Genoma Humano , Proteínas de Unión al ADN/metabolismo
6.
Curr Mol Med ; 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37340746

RESUMEN

BACKGROUND: To develop optimal personalized therapy for lung adenocarcinoma (LUAD), potential biomarkers associated with the prognosis are urgently needed. It is unclear what role T Cell Leukemia Homeobox 1 (TLX1) plays in LUAD. OBJECTIVE: In this study, TLX1's relationship with LUAD was investigated using TCGA database analysis, bioinformatics analysis, and experimental validation. METHODS: We examined the expression of TLX1 in pan cancer and LUAD, the relationship between TLX1 expression and clinical features, immune infiltration, its diagnostic and prognostic value, as well as TLX1 related pathways. The analysis included various statistical methods, including the Kaplan-Meier method, Cox regression analysis, GSEA, and immune infiltration analysis. TLX1 expression in LUAD cell lines was validated using qRT-PCR. RESULT: In LUAD patients, high expression of TLX1 was associated with T stage (P<0.001). High TLX1 expression was associated with worse overall survival (OS) (HR: 1.57; 95% CI: 1.18-2.1; P=0.002). And TLX1 [removed]HR: 1.619; 95% CI: 1.012-2.590; P=0.044) was independently correlated with OS in LUAD patients. TLX1 expression was associated with the pathways, including Rho GTPase effectors, DNA repair, TCF dependent signaling in response to WNT, signaling by Nuclear Receptors, signaling by Notch, chromatin-modifying enzymes, ESR-mediated signaling, cellular senescence, and transcriptional regulation by Runx1. TLX1 expression was correlated with aDC, Tcm, and TReg cells. The expression of TLX1 was significantly increased in LUAD cells compared to BEAS-2B cells. CONCLUSION: An association between high TLX1 expression and poor survival and immune infiltration was found in LUAD patients. There may be a potential role for TLX1 in diagnosis, prognosis, and immunotherapy for LUAD.

7.
Acta Biochim Biophys Sin (Shanghai) ; 55(7): 1052-1063, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37265348

RESUMEN

Phase separation provides a general mechanism for the formation of biomolecular condensates, and it plays a vital role in regulating diverse cellular processes, including gene expression. Although the role of transcription factors and coactivators in regulating transcription has long been understood, how phase separation is involved in this process is just beginning to be explored. In this review, we highlight recent advance in elucidating the molecular mechanisms and functions of transcriptional condensates in gene expression control. We discuss the different condensates formed at each stage of the transcription cycle and how they are dynamically regulated in response to diverse cellular and extracellular cues that cause rapid changes in gene expression. Furthermore, we present new findings regarding the dysregulation of transcription condensates and their implications in human diseases.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Transcripción Genética
8.
Nat Struct Mol Biol ; 30(6): 785-799, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37188808

RESUMEN

Mitochondrial antiviral signaling protein (MAVS) is an adapter that recruits and activates IRF3. However, the mechanisms underpinning the interplay between MAVS and IRF3 are largely unknown. Here we show that small ubiquitin-like modifier (SUMO)-specific protease 1 negatively regulates antiviral immunity by deSUMOylating MAVS. Upon virus infection, PIAS3-induced poly-SUMOylation promotes lysine 63-linked poly-ubiquitination and aggregation of MAVS. Notably, we observe that SUMO conjugation is required for MAVS to efficiently produce phase-separated droplets through association with a newly identified SUMO-interacting motif (SIM) in MAVS. We further identify a yet-unknown SIM in IRF3 that mediates its enrichment to the multivalent MAVS droplets. Conversely, IRF3 phosphorylation at crucial residues close to SIM rapidly disables SUMO-SIM interactions and releases activated IRF3 from MAVS. Our findings implicate SUMOylation in MAVS phase separation and suggest a thus far unknown regulatory process by which IRF3 can be efficiently recruited and released to facilitate timely activation of antiviral responses.


Asunto(s)
Sumoilación , Ubiquitina , Ubiquitinación , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Antivirales
9.
Trends Cell Biol ; 33(8): 682-694, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36513571

RESUMEN

Genome integrity is constantly challenged by endogenous and exogenous insults that cause DNA damage. To cope with these threats, cells have a surveillance mechanism, known as the DNA damage response (DDR), to repair any lesions. Although transcription has long been implicated in DNA repair, how transcriptional reprogramming is coordinated with the DDR is just beginning to be understood. In this review, we highlight recent advances in elucidating the molecular mechanisms underlying major transcriptional events, including RNA polymerase (Pol) II stalling and transcriptional silencing and recovery, which occur in response to DNA damage. Furthermore, we discuss how such transcriptional adaptation contributes to sensing and eliminating damaged DNA and how it can jeopardize genome integrity when it goes awry.


Asunto(s)
Daño del ADN , Transcripción Genética , Humanos , Daño del ADN/genética , Reparación del ADN/genética , ARN Polimerasa II/genética
10.
Infect Drug Resist ; 15: 6267-6277, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36329986

RESUMEN

Background: Streptococcus constellatus, a commensal, plays an important role in purulent infections. It has been reported as aggressive pathogen causing pleural empyema. But the role of S. constellatus in empyema has not been taken seriously. There are no studies about clinical characteristics of empyema caused by S. constellatus domestically and abroad. This study aimed to explore the clinical features and management of empyema caused by S. constellatus. Methods: A retrospective review of 9 patients diagnosed with empyema caused by S. constellatus in a hospital between January 2010 and August 2021 was performed. Results: S. constellatus empyema were mostly seen in old males (66.7%) with comorbid diseases. The high-risk factors include diabetes mellitus, oral infection, and oral surgery. All were unilateral encapsulated empyema (right-side, 55.6%), diagnosed with pneumonia (bilateral pneumonia, 88.9%; ipsilateral lung abscess, 44.4%). 33.3% of patients had S. constellatus and anaerobes co-isolated. S. constellatus were sensitive to penicillin G, linezolid, levofloxacin, vancomycin, ceftriaxone, and chloramphenicol, resistant to erythromycin, tetracycline, and clindamycin. 33.3% of the patients needed ventilator support. The primary treatment to S. constellatus empyema was timely pus drainage, intravenous antibiotics, and enough nutrition support, intrapleural fibrinolytics and surgery (VAST recommended first) in necessity. Conclusion: S. constellatus may cause pneumonia and lung abscess first and then spread to cause empyema mainly in old males with comorbid diseases. S. constellatus often co-isolated with anaerobes in empyema. Antibiotics should cover simultaneously both S. constellatus and anaerobes.

12.
Artículo en Inglés | MEDLINE | ID: mdl-36285159

RESUMEN

Objective: YuPingFeng Granules (YPFGs) is an herbal formula clinically used in China for more than 100 years to treat pneumonia. Nevertheless, the mechanism of YPFG in pneumonia treatment has not been established. This network pharmacology-based strategy has been performed to elucidate active compounds as well as mechanisms of YPFG in pneumonia treatment. Methods: First, active compounds of YPFG were identified in the traditional Chinese medicine systems pharmacology (TCMSP) database, and then the targets related to the active compounds were obtained from TCMSP and Swiss Target Prediction databases. Next, using DisGeNET, DrugBank, and GeneCards databases, we got therapeutic targets of pneumonia and common targets between pneumonia targets and YPFG. After that, a protein-protein interaction (PPI) network of pneumonia composed of common targets was built to analyze the interactions among these targets, which focused on screening for hub targets by topology. Then, online software and the ClusterProfiler package were utilized for the enrichment analysis of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) data. Finally, the visualization software of Autodock was used for molecular docking among the hub target proteins. Results: 10 hub genes were selected by comparing the GO and KEGG functions of pneumonia targets with those of the common targets of YPFG and pneumonia. By using molecular docking technology, a total of 3 active ingredients have been verified as being able to combine closely with 6 hub targets and contribute to their therapeutic effects. Conclusion: This research explored the multigene pharmacological mechanism of action of YPFG against pneumonia through network pharmacology. The findings present new ideas for studying the mechanism of action of Chinese medicine against pneumonia caused by bacteria.

13.
Anticancer Drugs ; 33(9): 979-982, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35946520

RESUMEN

Mutations in the epidermal growth factor receptor ( EGFR ) have been identified in 10-20% of nonsmall cell lung cancer (NSCLC), specifically lung adenocarcinomas. However, these mutations have rarely been reported in small cell lung cancer (SCLC) and lung squamous cell carcinoma (LUSC). Treatment for SCLC and LUSC patients has not yet been established. We present a rare case of p.A864V mutation in Exon 21 of EGFR gene in a patient with both SCLC and LUSC, which is the first case of such mutation type in lung cancer in the world. The patient was a 55-year-old female nonsmoker with stage IV SCLC and LUSC, gene sequencing revealed EGFR gene mutation, she refused EGFR tyrosine kinase inhibitors (TKIs) targeted therapy and received conservative treatment, which led to disease progression. In conclusion, clinicians should be aware of the possibility of the rare EGFR mutations. Platinum-based chemotherapy can be treated for SCLC and LUSC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Receptores ErbB/genética , Femenino , Humanos , Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Persona de Mediana Edad , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética
14.
Nat Immunol ; 23(8): 1193-1207, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35879450

RESUMEN

Innate antiviral immunity deteriorates with aging but how this occurs is not entirely clear. Here we identified SIRT1-mediated DNA-binding domain (DBD) deacetylation as a critical step for IRF3/7 activation that is inhibited during aging. Viral-stimulated IRF3 underwent liquid-liquid phase separation (LLPS) with interferon (IFN)-stimulated response element DNA and compartmentalized IRF7 in the nucleus, thereby stimulating type I IFN (IFN-I) expression. SIRT1 deficiency resulted in IRF3/IRF7 hyperacetylation in the DBD, which inhibited LLPS and innate immunity, resulting in increased viral load and mortality in mice. By developing a genetic code expansion orthogonal system, we demonstrated the presence of an acetyl moiety at specific IRF3/IRF7 DBD site/s abolish IRF3/IRF7 LLPS and IFN-I induction. SIRT1 agonists rescued SIRT1 activity in aged mice, restored IFN signaling and thus antagonized viral replication. These findings not only identify a mechanism by which SIRT1 regulates IFN production by affecting IRF3/IRF7 LLPS, but also provide information on the drivers of innate immunosenescence.


Asunto(s)
Antivirales , Sirtuina 1 , Animales , Inmunidad Innata , Factor 3 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Ratones , Transducción de Señal , Sirtuina 1/genética , Sirtuina 1/metabolismo , Replicación Viral
15.
BMC Pulm Med ; 22(1): 246, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35751045

RESUMEN

BACKGROUND: Cyclin-dependent kinase inhibitor 2C (CDKN2C) was identified to participate in the occurrence and development of multiple cancers; however, its roles in small cell lung carcinoma (SCLC) remain unclear. METHODS: Differential expression analysis of CDKN2C between SCLC and non-SCLC were performed based on 937 samples from multiple centers. The prognosis effects of CDKN2C in patients with SCLC were detected using both Kaplan-Meier curves and log-rank tests. Using receiver-operating characteristic curves, whether CDKN2C expression made it feasible to distinguish SCLC was determined. The potential mechanisms of CDKN2C in SCLC were investigated by gene ontology terms and signaling pathways (Kyoto Encyclopedia of Genes and Genomes). Based on 10,080 samples, a pan-cancer analysis was also performed to determine the roles of CDKN2C in multiple cancers. RESULTS: For the first time, upregulated CDKN2C expression was detected in SCLC samples at both the mRNA and protein levels (p of Wilcoxon rank-sum test < 0.05; standardized mean difference = 2.86 [95% CI 2.20-3.52]). Transcription factor FOXA1 expression may positively regulate CDKN2C expression levels in SCLC. High CDKN2C expression levels were related to the poor prognosis of patients with SCLC (hazard ratio > 1, p < 0.05) and showed pronounced effects for distinguishing SCLC from non-SCLC (sensitivity, specificity, and area under the curve ≥ 0.95). CDKN2C expression may play a role in the development of SCLC by affecting the cell cycle. Furthermore, the first pan-cancer analysis revealed the differential expression of CDKN2C in 16 cancers (breast invasive carcinoma, etc.) and its independent prognostic significance in nine cancers (e.g., adrenocortical carcinoma). CDKN2C expression was related to the immune microenvironment, suggesting its potential usefulness as a prognostic marker in immunotherapy. CONCLUSIONS: This study identified upregulated CDKN2C expression and its clinical significance in SCLC and other multiple cancers, suggesting its potential usefulness as a biomarker in treating and differentiating cancers.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Neoplasias Pulmonares/patología , Pronóstico , Carcinoma Pulmonar de Células Pequeñas/patología , Microambiente Tumoral
16.
Mol Biomed ; 3(1): 13, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35543798

RESUMEN

Liquid-liquid phase separation (LLPS) has received significant attention in recent biological studies. It refers to a phenomenon that biomolecule exceeds the solubility, condensates and separates itself from solution in liquid like droplets formation. Our understanding of it has also changed from memebraneless organelles to compartmentalization, muti-functional crucibles, and reaction regulators. Although this phenomenon has been employed for a variety of biological processes, recent studies mainly focus on its physiological significance, and the comprehensive research of the underlying physical mechanism is limited. The characteristics of side chains of amino acids and the interaction tendency of proteins function importantly in regulating LLPS thus should be pay more attention on. In addition, the importance of post-translational modifications (PTMs) has been underestimated, despite their abundance and crucial functions in maintaining the electrostatic balance. In this review, we first introduce the driving forces and protein secondary structures involved in LLPS and their different physical functions in cell life processes. Subsequently, we summarize the existing reports on PTM regulation related to LLPS and analyze the underlying basic principles, hoping to find some common relations between LLPS and PTM. Finally, we speculate several unreported PTMs that may have a significant impact on phase separation basing on the findings.

17.
Nat Cell Biol ; 24(4): 513-525, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35393539

RESUMEN

DNA damage shuts down genome-wide transcription to prevent transcriptional mutagenesis and to initiate repair signalling, but the mechanism to stall elongating RNA polymerase II (Pol II) is not fully understood. Central to the DNA damage response, poly(ADP-ribose) polymerase 1 (PARP1) initiates DNA repair by translocating to the lesions where it catalyses protein poly(ADP-ribosylation). Here we report that PARP1 inhibits Pol II elongation by inactivating the transcription elongation factor P-TEFb, a CDK9-cyclin T1 (CycT1) heterodimer. After sensing damage, the activated PARP1 binds to transcriptionally engaged P-TEFb and modifies CycT1 at multiple positions, including histidine residues that are rarely used as an acceptor site. This prevents CycT1 from undergoing liquid-liquid phase separation that is required for CDK9 to hyperphosphorylate Pol II and to stimulate elongation. Functionally, poly(ADP-ribosylation) of CycT1 promotes DNA repair and cell survival. Thus, the P-TEFb-PARP1 signalling plays a protective role in transcription quality control and genomic stability maintenance after DNA damage.


Asunto(s)
Daño del ADN , Factor B de Elongación Transcripcional Positiva , ADP-Ribosilación , Ciclina T/química , Ciclina T/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
18.
J Oncol ; 2022: 2010341, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356257

RESUMEN

The clinical progression of small-cell lung cancer (SCLC) remains pessimistic. The aim of the present study was to promote the understanding of the clinical significance and mechanism of O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) in SCLC. Wilcoxon tests, standardized mean difference (SMD), and Kruskal-Wallis tests were utilized to compare OGT level differences among the experimental and control groups. The univariate Cox regression analysis, Kaplan-Meier curves, and receiver operating characteristic curves were applied to determine OGT's clinical relevance in cancers. The Spearman correlation analysis and enrichment analysis were utilized to explore the underlying mechanisms of OGT in cancers. For the first time in the field, we provide an overview of OGT in 32 cancers using a large number of samples (n = 21,196), determining distinct OGT expression in 25 cancers and its prognosis effects in 12 cancers. Furthermore, using 950 samples from multiple sources, upregulated OGT was found in both mRNA and protein levels in SCLC (SMD = 0.93, 95% CI [0.24, 1.63]). Higher OGT levels represented a more unfavorable disease-free interval for SCLC patients (p < 0.001). The research also identified OGT expression as a potential marker for SCLC prediction (sensitivity = 0.79, specificity = 0.86, and AUC = 0.88). The high expression of OGT in SCLC may result from the positive regulation of two transcription factors-DEK and XRN2. We primarily investigated the underlying mechanisms of OGT in SCLC. Herein, based on the analyses from pan-cancer to SCLC, OGT demonstrated conspicuous clinical significance. OGT may be an underlying biomarker for the treatment and identification of some cancers, including SCLC.

19.
iScience ; 25(1): 103719, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35072011

RESUMEN

The BET-bromodomain protein BRD4 uses two bromodomains to target acetyl-histones and other domains to recruit P-TEFb and other transcription factors to stimulate transcription of proto-oncogenes and key cell identity genes. Recent studies show that its ability to form phase-separated condensates that cluster preferentially at the super-enhancer regions of target genes is key for BRD4 to exert its functions. Here, we describe the identification of a natural product called PCG from polygonum cuspidatum Sieb.et Zucc., a traditional Chinese medicinal herb, that directly binds to BRD4. This binding inhibits BRD4 phase separation, turns dynamic BRD4 nuclear condensates into static aggregates, and effectively shuts down transcription of BRD4-dependent genes. Thus, through PCG we have discovered a BET inhibitor that not only selectively targets BRD4 but also works by suppressing phase separation, a mechanism of action that is different from those of the other known BET inhibitors.

20.
Nat Chem Biol ; 18(1): 5-6, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34916618
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA