Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 7090, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127654

RESUMEN

Biogenesis of organelles requires targeting of a subset of proteins to specific subcellular domains by signal peptides or mechanisms controlling mRNA localization and local translation. How local distribution and translation of specific mRNAs for organelle biogenesis is achieved remains elusive and likely to be dependent on the cellular context. Here we identify Trinucleotide repeat containing-6a (Tnrc6a), a component of the miRNA pathway, distinctively localized to apical granules of differentiating airway multiciliated cells (MCCs) adjacent to centrioles. In spite of being enriched in TNRC6A and the miRNA-binding protein AGO2, they lack enzymes for mRNA degradation. Instead, we found these apical granules enriched in components of the mRNA translation machinery and newly synthesized proteins suggesting that they are specific hubs for target mRNA localization and local translation in MCCs. Consistent with this, Tnrc6a loss of function prevented formation of these granules and led to a broad reduction, rather than stabilization of miRNA targets. These included downregulation of key genes involved in ciliogenesis and was associated with defective multicilia formation both in vivo and in primary airway epithelial cultures. Similar analysis of Tnrc6a disruption in yolk sac showed stabilization of miRNA targets, highlighting the potential diversity of these mechanisms across organs.


Asunto(s)
Centriolos , MicroARNs , Centriolos/metabolismo , MicroARNs/genética , Proteínas/metabolismo , Epitelio/metabolismo , ARN Mensajero/metabolismo
2.
iScience ; 25(8): 104751, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35942101

RESUMEN

Differences in ciliary morphology and dynamics among multiciliated cells of the respiratory tract contribute to efficient mucociliary clearance. Nevertheless, little is known about how these phenotypic differences are established. We show that Prominin 1 (Prom1), a transmembrane protein widely used as stem cell marker, is crucial to this process. During airway differentiation, Prom1 becomes restricted to multiciliated cells, where it is expressed at distinct levels along the proximal-distal axis of the airways. Prom1 is induced by Notch in multiciliated cells, and Notch inactivation abolishes this gradient of expression. Prom1 was not required for multicilia formation, but when inactivated resulted in longer cilia that beat at a lower frequency. Disruption of Notch resulted in opposite effects and suggested that Notch fine-tunes Prom1 levels to regulate the multiciliated cell phenotype and generate diversity among these cells. This mechanism could contribute to the innate defense of the lung and help prevent pulmonary disease.

3.
Sci Rep ; 11(1): 10799, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031475

RESUMEN

The impact of prematurity on human development and neonatal diseases, such as bronchopulmonary dysplasia, has been widely reported. However, little is known about the effects of prematurity on the programs of stem cell self-renewal and differentiation of the upper respiratory epithelium, which is key for adaptation to neonatal life. We developed a minimally invasive methodology for isolation of neonatal basal cells from nasopharyngeal (NP) aspirates and performed functional analysis in organotypic cultures to address this issue. We show that preterm NP progenitors have a markedly distinct molecular signature of abnormal proliferation and mitochondria quality control compared to term progenitors. Preterm progenitors had lower oxygen consumption at baseline and were unable to ramp up consumption to the levels of term cells when challenged. Although they formed a mucociliary epithelium, ciliary function tended to decline in premature cells as they differentiated, compared to term cells. Together, these differences suggested increased sensitivity of preterm progenitors to environmental stressors under non-homeostatic conditions.


Asunto(s)
Displasia Broncopulmonar/patología , Perfilación de la Expresión Génica/métodos , Nasofaringe/citología , Oxígeno/metabolismo , Células Madre/citología , Displasia Broncopulmonar/genética , Técnicas de Cultivo de Célula , Diferenciación Celular , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Recién Nacido , Recien Nacido Prematuro , Nasofaringe/metabolismo , Análisis de Secuencia de ARN , Células Madre/metabolismo
4.
Elife ; 82019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31631837

RESUMEN

Notch signaling regulates cell fate selection during development in multiple organs including the lung. Previous studies on the role of Notch in the lung focused mostly on Notch pathway core components or receptor-specific functions. It is unclear, however, how Jagged or Delta-like ligands collectively or individually (Jag1, Jag2, Dll1, Dll4) influence differentiation of airway epithelial progenitors. Using mouse genetic models we show major differences in Jag and Dll in regulation and establishment of cell fate. Jag ligands had a major impact in balancing distinct cell populations in conducting airways, but had no role in the establishment of domains and cellular abundance in the neuroendocrine (NE) microenvironment. Surprisingly, Dll ligands were crucial in restricting cell fate and size of NE bodies and showed an overlapping role with Jag in differentiation of NE-associated secretory (club) cells. These mechanisms may potentially play a role in human conditions that result in aberrant NE differentiation, including NE hyperplasias and cancer.


Asunto(s)
Diferenciación Celular , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Pulmón/citología , Proteínas de la Membrana/metabolismo , Proteínas Serrate-Jagged/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Microambiente Celular , Ligandos , Ratones , Sistemas Neurosecretores/metabolismo , Receptores Notch/metabolismo , Transducción de Señal
5.
Development ; 146(9)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30944105

RESUMEN

Although the Hippo-yes-associated protein (Yap) pathway has been implicated in lung development, the specific roles for Yap and its nucleocytoplasmic shuttling in the developing airway and alveolar compartments remain elusive. Moreover, conflicting results from expression studies and differences in the lung phenotypes of Yap and Hippo kinase null mutants caused controversy over the dynamics and significance of Yap subcellular localization in the developing lung. Here, we show that the aberrant morphogenesis of Yap-deficient lungs results from the disruption of developmental events specifically in distal epithelial progenitors. We also show that activation of nuclear Yap is enough to fulfill the Yap requirements to rescue abnormalities in these lungs. Remarkably, we found that Yap nucleocytoplasmic shuttling is largely dispensable in epithelial progenitors for both branching morphogenesis and sacculation. However, if maintained transcriptionally active in airways, nuclear Yap profoundly alters proximal-distal identity and halts epithelial differentiation. Taken together, these observations provide novel insights into the crucial importance of Hippo-Yap signaling in the lung prenatally.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pulmón/embriología , Pulmón/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular/genética , Proliferación Celular/genética , Proliferación Celular/fisiología , Técnica del Anticuerpo Fluorescente , Vía de Señalización Hippo , Hibridación in Situ , Masculino , Ratones , Morfogénesis/genética , Morfogénesis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Células Madre/metabolismo , Proteínas Señalizadoras YAP
7.
Dev Cell ; 44(6): 752-761.e4, 2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29587145

RESUMEN

Basal cells (BCs) are p63-expressing multipotent progenitors of skin, tracheoesophageal and urinary tracts. p63 is abundant in developing airways; however, it remains largely unclear how embryonic p63+ cells contribute to the developing and postnatal respiratory tract epithelium, and ultimately how they relate to adult BCs. Using lineage-tracing and functional approaches in vivo, we show that p63+ cells arising from the lung primordium are initially multipotent progenitors of airway and alveolar lineages but later become restricted proximally to generate the tracheal adult stem cell pool. In intrapulmonary airways, these cells are maintained immature to adulthood in bronchi, establishing a rare p63+Krt5- progenitor cell population that responds to H1N1 virus-induced severe injury. Intriguingly, this pool includes a CC10 lineage-labeled p63+Krt5- cell subpopulation required for a full H1N1-response. These data elucidate key aspects in the establishment of regionally distinct adult stem cell pools in the respiratory system, potentially with relevance to other organs.


Asunto(s)
Linaje de la Célula , Células Madre Embrionarias/citología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Pulmón/citología , Fosfoproteínas/fisiología , Mucosa Respiratoria/citología , Células Madre/citología , Transactivadores/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/virología , Femenino , Pulmón/metabolismo , Pulmón/virología , Masculino , Ratones , Ratones Noqueados , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , Células Madre/metabolismo , Células Madre/virología , Tráquea/citología , Tráquea/metabolismo , Tráquea/virología
8.
Nat Commun ; 8: 15857, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28675157

RESUMEN

Abnormal development of multiciliated cells is a hallmark of a variety of human conditions associated with chronic airway diseases, hydrocephalus and infertility. Multiciliogenesis requires both activation of a specialized transcriptional program and assembly of cytoplasmic structures for large-scale centriole amplification that generates basal bodies. It remains unclear, however, what mechanism initiates formation of these multiprotein complexes in epithelial progenitors. Here we show that this is triggered by nucleocytoplasmic translocation of the transcription factor E2f4. After inducing a transcriptional program of centriole biogenesis, E2f4 forms apical cytoplasmic organizing centres for assembly and nucleation of deuterosomes. Using genetically altered mice and E2F4 mutant proteins we demonstrate that centriole amplification is crucially dependent on these organizing centres and that, without cytoplasmic E2f4, deuterosomes are not assembled, halting multiciliogenesis. Thus, E2f4 integrates nuclear and previously unsuspected cytoplasmic events of centriole amplification, providing new perspectives for the understanding of normal ciliogenesis, ciliopathies and cancer.


Asunto(s)
Centriolos/metabolismo , Cilios/metabolismo , Citoplasma/metabolismo , Factor de Transcripción E2F4/metabolismo , Transporte Activo de Núcleo Celular , Animales , Autoantígenos/metabolismo , Cuerpos Basales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Gránulos Citoplasmáticos/metabolismo , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Transcripción Genética
9.
PLoS Genet ; 11(5): e1005238, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26020233

RESUMEN

Differentiation of lung vascular smooth muscle cells (vSMCs) is tightly regulated during development or in response to challenges in a vessel specific manner. Aberrant vSMCs specifically associated with distal pulmonary arteries have been implicated in the pathogenesis of respiratory diseases, such as pulmonary arterial hypertension (PAH), a progressive and fatal disease, with no effective treatment. Therefore, it is highly relevant to understand the underlying mechanisms of lung vSMC differentiation. miRNAs are known to play critical roles in vSMC maturation and function of systemic vessels; however, little is known regarding the role of miRNAs in lung vSMCs. Here, we report that miR-29 family members are the most abundant miRNAs in adult mouse lungs. Moreover, high levels of miR-29 expression are selectively associated with vSMCs of distal vessels in both mouse and human lungs. Furthermore, we have shown that disruption of miR-29 in vivo leads to immature/synthetic vSMC phenotype specifically associated with distal lung vasculature, at least partially due to the derepression of KLF4, components of the PDGF pathway and ECM-related genes associated with synthetic phenotype. Moreover, we found that expression of FBXO32 in vSMCs is significantly upregulated in the distal vasculature of miR-29 null lungs. This indicates a potential important role of miR-29 in smooth muscle cell function by regulating FBXO32 and SMC protein degradation. These results are strongly supported by findings of a cell autonomous role of endogenous miR-29 in promoting SMC differentiation in vitro. Together, our findings suggested a vessel specific role of miR-29 in vSMC differentiation and function by targeting several key negative regulators.


Asunto(s)
Diferenciación Celular/genética , Hipertensión Pulmonar/genética , MicroARNs/genética , Arteria Pulmonar/metabolismo , Animales , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Humanos , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/biosíntesis , Factores de Transcripción de Tipo Kruppel/genética , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Ratones , MicroARNs/antagonistas & inhibidores , Proteínas Musculares/biosíntesis , Proteínas Musculares/genética , Músculo Liso Vascular/metabolismo , Arteria Pulmonar/crecimiento & desarrollo , Arteria Pulmonar/patología , Proteínas Ligasas SKP Cullina F-box/biosíntesis , Proteínas Ligasas SKP Cullina F-box/genética
10.
Respir Res ; 16: 22, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25763778

RESUMEN

BACKGROUND: The transcription factor NK2 homeobox 1 (Nkx2-1) plays essential roles in epithelial cell proliferation and differentiation in mouse and human lung development and tumorigenesis. A better understanding of genes and pathways downstream of Nkx2-1 will clarify the multiple roles of this critical lung factor. Nkx2-1 regulates directly or indirectly numerous protein-coding genes; however, there is a paucity of information about Nkx2-1-regulated microRNAs (miRNAs). METHODS AND RESULTS: By miRNA array analyses of mouse epithelial cell lines in which endogenous Nkx2-1 was knocked-down, we revealed that 29 miRNAs were negatively regulated including miR-200c, and 39 miRNAs were positively regulated by Nkx2-1 including miR-1195. Mouse lungs lacking functional phosphorylated Nkx2-1 showed increased expression of miR-200c and alterations in the expression of other top regulated miRNAs. Moreover, chromatin immunoprecipitation assays showed binding of NKX2-1 protein to regulatory regions of these miRNAs. Promoter reporter assays indicated that 1kb of the miR-200c 5' flanking region was transcriptionally active but did not mediate Nkx2-1- repression of miR-200c expression. 3'UTR reporter assays support a direct regulation of the predicted targets Nfib and Myb by miR-200c. CONCLUSIONS: These studies suggest that Nkx2-1 controls the expression of specific miRNAs in lung epithelial cells. In particular, we identified a regulatory link between Nkx2-1, the known tumor suppressor miR-200c, and the developmental and oncogenic transcription factors Nfib and Myb, adding new players to the regulatory mechanisms driven by Nkx2-1 in lung epithelial cells that may have implications in lung development and tumorigenesis.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Células Epiteliales/metabolismo , Pulmón/metabolismo , MicroARNs/metabolismo , Factores de Transcripción NFI/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas v-myb/metabolismo , Factores de Transcripción/metabolismo , Regiones no Traducidas 3' , Región de Flanqueo 5' , Animales , Sitios de Unión , Línea Celular , Transformación Celular Neoplásica/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Reporteros , Ratones , MicroARNs/genética , Factores de Transcripción NFI/genética , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Oncogénicas v-myb/genética , Fosforilación , Regiones Promotoras Genéticas , Factor Nuclear Tiroideo 1 , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Transcripción Genética , Transfección
11.
Biochem Cell Biol ; 93(2): 109-18, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25454218

RESUMEN

Pulmonary fibrosis is a pathological condition in which lungs become scarred due to the excess extracellular matrix (ECM) deposition and structural alterations in the interstitium of lung parenchyma. Many patients with interstitial lung diseases (ILDs) caused by long-term exposure to toxic substances, chronic infections, or autoimmune responses develop fibrosis. Etiologies for many ILDs are unknown, such as idiopathic pulmonary fibrosis (IPF), a devastating, relentless form of pulmonary fibrosis with a median survival of 2-3 years. Despite several decades of research, factors that initiate and sustain the fibrotic response in lungs remain unclear and there is no effective treatment to block progression of fibrosis. Here we summarize recent findings on the antifibrotic activity of miR-29, a small noncoding regulatory RNA, in the pathogenesis of fibrosis by regulating ECM production and deposition, and epithelial-mesenchymal transition (EMT). We also describe interactions of miR-29 with multiple profibrotic and inflammatory pathways. Finally, we review the antifibrotic activity of miR-29 in animal models of fibrosis and highlight miR-29 as a promising therapeutic reagent or target for the treatment of pulmonary fibrosis.


Asunto(s)
Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/genética , MicroARNs/metabolismo , Animales , Colágeno/metabolismo , Citocinas/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones
12.
Am J Respir Cell Mol Biol ; 52(4): 397-408, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25211015

RESUMEN

Decades of studies have shown evolutionarily conserved molecular networks consisting of transcriptional factors, diffusing growth factors, and signaling pathways that regulate proper lung development. Recently, microRNAs (miRNAs), small, noncoding regulatory RNAs, have been integrated into these networks. Significant advances have been made in characterizing the developmental stage- or cell type-specific miRNAs during lung development by using approaches such as genome-wide profiling and in situ hybridization. Results from gain- or loss-of-function studies revealed pivotal roles of protein components of the miRNA pathway and individual miRNAs in regulating proliferation, apoptosis, differentiation, and morphogenesis during lung development. Aberrant expression or functions of these components have been associated with pulmonary disorders, suggesting their involvement in pathogenesis of these diseases. Moreover, genetically modified mice generated in these studies have become useful models of human lung diseases. Challenges in this field include characterization of collective function and responsible targets of miRNAs specifically expressed during lung development, and translation of these basic findings into clinically relevant information for better understanding of human diseases. The goal of this review is to discuss the recent progress on the understanding of how the miRNA pathway regulates lung development, how dysregulation of miRNA activities contributes to pathogenesis of related pulmonary diseases, and to identify relevant questions and future directions.


Asunto(s)
Enfermedades Pulmonares/metabolismo , MicroARNs/fisiología , Animales , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Humanos , Pulmón/irrigación sanguínea , Pulmón/embriología , Pulmón/metabolismo , Pulmón/patología , Enfermedades Pulmonares/genética , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/fisiología , Interferencia de ARN , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología
13.
Am J Respir Cell Mol Biol ; 51(2): 273-83, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24617895

RESUMEN

Sonic hedgehog (Shh) is expressed and secreted from the embryonic lung epithelium and acts on the adjacent mesenchymal cells via its receptor Patched (Ptch)/Smoothened (Smo) and transcriptional effectors Gli proteins. Genetic studies showed that the Shh pathway plays critical roles in mouse lung development. However, little is known about microRNAs (miRNAs) downstream of Shh in embryonic lungs. Here we profiled miRNAs in embryonic lung cultures treated with cyclopamine, a specific Smo antagonist or with Smo agonist by next-generation of sequencing. We then performed functional screening to examine whether some of these miRNAs can modulate the induction of Gli-responsive luciferase by Shh treatment. These analyses revealed that expression of miR-326 and its host gene, Arrestin ß1, is selectively enriched in embryonic lung mesenchymal cells and is specifically influenced by Shh activity. Furthermore, functional analyses showed that miR-326 acts as a negative modulator for Shh signaling by directly targeting Smo and Gli2. Together, these findings suggest a novel miR-326-negative feedback loop in regulating the activity of Shh signaling.


Asunto(s)
Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Pulmón/metabolismo , MicroARNs/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Arrestinas/genética , Arrestinas/metabolismo , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Hedgehog/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Factores de Transcripción de Tipo Kruppel/genética , Pulmón/efectos de los fármacos , Pulmón/embriología , Ratones , MicroARNs/genética , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Receptor Smoothened , Transfección , Alcaloides de Veratrum/farmacología , Proteína Gli2 con Dedos de Zinc , beta-Arrestinas
14.
Am J Physiol Lung Cell Mol Physiol ; 306(5): L405-19, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24375798

RESUMEN

Chronic injury of alveolar lung epithelium leads to epithelial disintegrity in idiopathic pulmonary fibrosis (IPF). We had reported earlier that Grhl2, a transcriptional factor, maintains alveolar epithelial cell integrity by directly regulating components of adherens and tight junctions and thus hypothesized an important role of GRHL2 in pathogenesis of IPF. Comparison of GRHL2 distribution at different stages of human lung development showed its abundance in developing lung epithelium and in adult lung epithelium. However, GRHL2 is detected in normal human lung mesenchyme only at early fetal stage (week 9). Similar mesenchymal reexpression of GRHL2 was also observed in IPF. Immunofluorescence analysis in serial sections from three IPF patients revealed at least two subsets of alveolar epithelial cells (AEC), based on differential GRHL2 expression and the converse fluorescence intensities for epithelial vs. mesenchymal markers. Grhl2 was not detected in mesenchyme in intraperitoneal bleomycin-induced injury as well as in spontaneously occurring fibrosis in double-mutant HPS1 and HPS2 mice, whereas in contrast in a radiation-induced fibrosis model, with forced Forkhead box M1 (Foxm1) expression, an overlap of Grhl2 with a mesenchymal marker was observed in fibrotic regions. Grhl2's role in alveolar epithelial cell plasticity was confirmed by altered Grhl2 gene expression analysis in IPF and further validated by in vitro manipulation of its expression in alveolar epithelial cell lines. Our findings reveal important pathophysiological differences between human IPF and specific mouse models of fibrosis and support a crucial role of GRHL2 in epithelial activation in lung fibrosis and perhaps also in epithelial plasticity.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Fibrosis Pulmonar Idiopática/fisiopatología , Mucosa Respiratoria/fisiología , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Femenino , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Masculino , Mesodermo/metabolismo , Mesodermo/fisiología , Ratones , Ratones Mutantes , Persona de Mediana Edad , Embarazo , Alveolos Pulmonares/citología , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/fisiología , Mucosa Respiratoria/citología , Mucosa Respiratoria/metabolismo , Especificidad de la Especie , Factores de Transcripción/genética
15.
PLoS One ; 8(9): e74469, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24040256

RESUMEN

Phenotypes of lung smooth muscle cells in health and disease are poorly characterized. This is due, in part, to a lack of methodologies that allow for the independent and direct isolation of bronchial smooth muscle cells (BSMCs) and vascular smooth muscle cells (VSMCs) from the lung. In this paper, we describe the development of a bi-fluorescent mouse that permits purification of these two cell populations by cell sorting. By subjecting this mouse to an acute allergen based-model of airway inflammation that exhibits many features of asthma, we utilized this tool to characterize the phenotype of so-called asthmatic BSMCs. First, we examined the biophysical properties of single BSMCs from allergen sensitized mice and found increases in basal tone and cell size that were sustained ex vivo. We then generated for the first time, a comprehensive characterization of the global gene expression changes in BSMCs isolated from the bi-fluorescent mice with allergic airway inflammation. Using statistical methods and pathway analysis, we identified a number of differentially expressed mRNAs in BSMCs from allergen sensitized mice that code for key candidate proteins underlying changes in matrix formation, contractility, and immune responses. Ultimately, this tool will provide direction and guidance for the logical development of new markers and approaches for studying human lung smooth muscle.


Asunto(s)
Asma/genética , Bronquios/metabolismo , Hiperreactividad Bronquial/genética , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Fenotipo , Proteoma/inmunología , Alérgenos/inmunología , Animales , Asma/inmunología , Asma/patología , Bronquios/inmunología , Bronquios/patología , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/patología , Tamaño de la Célula , Modelos Animales de Enfermedad , Fluorescencia , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Inmunización , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Ratones , Ratones Transgénicos , Músculo Liso Vascular/inmunología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/inmunología , Miocitos del Músculo Liso/patología , Ovalbúmina/inmunología , Proteoma/genética , ARN Mensajero/genética , ARN Mensajero/inmunología , Análisis de la Célula Individual
16.
J Biol Chem ; 287(8): 5979-87, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22187428

RESUMEN

Tnrc6 family members (Tnrc6a/b/c) are key components of the RNA-induced silencing complex in microRNA (miRNA)-mediated gene suppression. Here, we show that Tnrc6a, also known as GW182, is selectively expressed in the yolk sac endoderm and that gene trap disruption of GW182 leads to growth arrest and apoptosis. We found that targets of miRNAs highly expressed in the yolk sac are significantly derepressed in GW182(gt/gt) mutant mice, although levels of miRNAs are not altered. Specifically, growth arrest and apoptosis phenotype are associated with significant derepression of Cdkn1a (p21), Cdkn1c (P27), Lats1, Lats2, Rb1, Rbl, Bim, and Pten, known targets of miRNAs from miR-17/20/93/106 clusters highly expressed in yolk sac endoderm. Together, these data strongly suggest that GW182 is an essential functional component in the RNA-induced silencing complex for miRNA-mediated gene silencing in vivo, and selectively regulation of miRNA activity plays an important role in the proper development of yolk sac.


Asunto(s)
Autoantígenos/metabolismo , Endodermo/metabolismo , MicroARNs/genética , Saco Vitelino/embriología , Animales , Apoptosis/genética , Autoantígenos/genética , Secuencia de Bases , Ciclo Celular/genética , Línea Celular , Endodermo/citología , Silenciador del Gen , Hematopoyesis/genética , Ratones , Factores de Tiempo
17.
J Neurosci ; 31(43): 15407-15, 2011 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22031887

RESUMEN

Dysfunctional neural control of airway smooth muscle (ASM) is involved in inflammatory diseases, such as asthma. However, neurogenesis in the lung is poorly understood. This study uses mouse models to investigate developmental mechanisms of ASM innervation, a process that is highly coordinated with ASM formation during lung branching morphogenesis. We show that brain-derived neurotrophic factor (BDNF) is an essential ASM-derived signal for innervation. Although BDNF mRNA expression is temporally dissociated with ASM formation and innervation, BDNF protein is coordinately produced through post-transcriptional suppression by miR-206. Using a combination of chemical and genetic approaches to modulate sonic hedgehog (Shh) signaling, a pathway essential for lung branching and ASM formation, we show that Shh signaling blocks miR-206 expression, which in turn increases BDNF protein expression. Together, our work uncovers a functional cascade that involves Shh, miR-206 and BDNF to coordinate ASM formation and innervation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas Hedgehog/metabolismo , MicroARNs/metabolismo , Músculo Liso/fisiología , Sistema Respiratorio/anatomía & histología , Sistema Respiratorio/inervación , Factores de Edad , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Hedgehog/genética , Ratones , Ratones Transgénicos , MicroARNs/genética , Músculo Liso/inervación , ARN Mensajero/metabolismo , Sistema Respiratorio/embriología , Transducción de Señal/genética , Tubulina (Proteína)/metabolismo
18.
Breast Cancer Res ; 13(2): R24, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21375733

RESUMEN

INTRODUCTION: microRNA (miRNA) are short, noncoding RNA that negatively regulate gene expression and may play a causal role in invasive breast cancer. Since many genetic aberrations of invasive disease are detectable in early stages, we hypothesized that miRNA expression dysregulation and the predicted changes in gene expression might also be found in early breast neoplasias. METHODS: Expression profiling of 365 miRNA by real-time quantitative polymerase chain reaction assay was combined with laser capture microdissection to obtain an epithelium-specific miRNA expression signature of normal breast epithelium from reduction mammoplasty (RM) (n = 9) and of paired samples of histologically normal epithelium (HN) and ductal carcinoma in situ (DCIS) (n = 16). To determine how miRNA may control the expression of codysregulated mRNA, we also performed gene expression microarray analysis in the same paired HN and DCIS samples and integrated this with miRNA target prediction. We further validated several target pairs by modulating the expression levels of miRNA in MCF7 cells and measured the expression of target mRNA and proteins. RESULTS: Thirty-five miRNA were aberrantly expressed between RM, HN and DCIS. Twenty-nine miRNA and 420 mRNA were aberrantly expressed between HN and DCIS. Combining these two data sets with miRNA target prediction, we identified two established target pairs (miR-195:CCND1 and miR-21:NFIB) and tested several novel miRNA:mRNA target pairs. Overexpression of the putative tumor suppressor miR-125b, which is underexpressed in DCIS, repressed the expression of MEMO1, which is required for ErbB2-driven cell motility (also a target of miR-125b), and NRIP1/RIP140, which modulates the transcriptional activity of the estrogen receptor. Knockdown of the putative oncogenic miRNA miR-182 and miR-183, both highly overexpressed in DCIS, increased the expression of chromobox homolog 7 (CBX7) (which regulates E-cadherin expression), DOK4, NMT2 and EGR1. Augmentation of CBX7 by knockdown of miR-182 expression, in turn, positively regulated the expression of E-cadherin, a key protein involved in maintaining normal epithelial cell morphology, which is commonly lost during neoplastic progression. CONCLUSIONS: These data provide the first miRNA expression profile of normal breast epithelium and of preinvasive breast carcinoma. Further, we demonstrate that altered miRNA expression can modulate gene expression changes that characterize these early cancers. We conclude that miRNA dysregulation likely plays a substantial role in early breast cancer development.


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Intraductal no Infiltrante/genética , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Adulto , Anciano , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cadherinas/biosíntesis , Carcinoma Intraductal no Infiltrante/metabolismo , Carcinoma Intraductal no Infiltrante/patología , Línea Celular Tumoral , Proteína 1 de la Respuesta de Crecimiento Precoz/biosíntesis , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Persona de Mediana Edad , Invasividad Neoplásica , Proteínas de Hierro no Heme/biosíntesis , Complejo Represivo Polycomb 1 , ARN Mensajero/biosíntesis , Proteínas Represoras/biosíntesis
19.
Am J Respir Cell Mol Biol ; 45(2): 287-94, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20971881

RESUMEN

MicroRNAs (miRNA) are small regulatory RNAs that control gene expression by translational suppression and destabilization of target mRNAs. There is increasing evidence that miRNAs regulate genes associated with fibrosis in organs, such as the heart, kidney, liver, and the lung. In a large-scale screening for miRNAs potentially involved in bleomycin-induced fibrosis, we found expression of miR-29 family members significantly reduced in fibrotic lungs. Analysis of normal lungs showed the presence of miR-29 in subsets of interstitial cells of the alveolar wall, pleura, and at the entrance of the alveolar duct, known sites of pulmonary fibrosis. miR-29 levels inversely correlated with the expression levels of profibrotic target genes and the severity of the fibrosis. To study the impact of miR-29 down-regulation in the lung interstitium, we characterized gene expression profiles of human fetal lung fibroblast IMR-90 cells in which endogenous miR-29 was knocked down. This confirmed the derepression of reported miR-29 targets, including several collagens, but also revealed up-regulation of a large number of previously unrecognized extracellular matrix-associated and remodeling genes. Moreover, we found that miR-29 is suppressed by transforming growth factor (TGF)-ß1 in these cells, and that many fibrosis-associated genes up-regulated by TGF-ß1 are derepressed by miR-29 knockdown. Interestingly, a comparison of TGF-ß1 and miR-29 targets revealed that miR-29 controls an additional subset of fibrosis-related genes, including laminins and integrins, independent of TGF-ß1. Together, these strongly suggest a role of miR-29 in the pathogenesis of pulmonary fibrosis. miR-29 may be a potential new therapeutic target for this disease.


Asunto(s)
Biomarcadores/metabolismo , Pulmón/metabolismo , MicroARNs/genética , Fibrosis Pulmonar/genética , Factor de Crecimiento Transformador beta1/farmacología , Regiones no Traducidas 3' , Animales , Antibióticos Antineoplásicos/toxicidad , Bleomicina/toxicidad , Northern Blotting , Western Blotting , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Hibridación in Situ , Luciferasas/metabolismo , Pulmón/citología , Pulmón/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Cell Cycle ; 9(9): 1809-18, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20404570

RESUMEN

Reduced expression of miR-129 has been reported in multiple tumor cell lines and in primary tumors including medulloblastoma, undifferentiated gastric cancers, lung adenocarcinoma, endometrial cancer and colorectal carcinoma. There is also recent evidence of an anti-proliferative activity of miR-129 in tumor cell lines. Still, little is known about how miR-129 regulates cell proliferation. Here we found that lentiviral-mediated overexpression of miR-129 in mouse lung epithelial cells (E10 cells) results in significant G(1) phase arrest that eventually leads to cell death. miR-129 induce G(1) phase arrest in multiple human lung adenocarcinoma cell lines, suggesting miR-129 targeting of G(1)/S phase-specific regulators. Interestingly, we show that Cdk6, a kinase involved in G(1)-S transition, is a direct target of miR-129. We also found the downregulation of three other cell cycle-related novel targets of miR-129, including Erk1, Erk2 and protein kinase C epsilon (Prkce). We further show that among these targets, only Cdk6 is functionally relevant. Restoring expression of Cdk6, but not Prkce partially rescues the cell growth arrest and cell death phenotype that results from miR-129 overexpression. Together, our data indicate that miR-129 plays an important role in regulating cell proliferation by downregulation of Cdk6.


Asunto(s)
Quinasa 6 Dependiente de la Ciclina/metabolismo , MicroARNs/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Quinasa 6 Dependiente de la Ciclina/genética , Regulación hacia Abajo , Fase G1 , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Fase S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...