Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 122
1.
BMC Med Imaging ; 23(1): 216, 2023 12 21.
Article En | MEDLINE | ID: mdl-38129778

BACKGROUND: Due to the highly heterogeneity of the breast cancer, it would be desirable to obtain a non-invasive method to early predict the treatment response and survival outcome of the locally advanced breast cancer (LABC) patients undergoing neoadjuvant chemotherapy (NAC). This study aimed at investigating whether strain elastography (SE) can early predict the pathologic complete response (pCR) and recurrence-free survival (RFS) in LABC patients receiving NAC. METHODS: In this single-center retrospective study, 122 consecutive women with LABC who underwent SE examination pre-NAC and after one and two cycles of NAC enrolled in the SHPD001(NCT02199418) and SHPD002 (NCT02221999) trials between January 2014 and August 2017 were included. The SE parameters (Elasticity score, ES; Strain ratio, SR; Hardness percentage, HP, and Area ratio, AR) before and during NAC were assessed. The relative changes in SE parameters after one and two cycles of NAC were describe as ΔA1 and ΔA2, respectively. Logistic regression analysis and Cox proportional hazards model were used to identify independent variables associated with pCR and RFS. RESULTS: Forty-nine (40.2%) of the 122 patients experienced pCR. After 2 cycles of NAC, SR2 (odds ratio [OR], 1.502; P = 0.003) and ΔSR2 (OR, 0.013; P = 0.015) were independently associated with pCR, and the area under the receiver operating characteristic curve for the combination of them to predict pCR was 0.855 (95%CI: 0.779, 0.912). Eighteen (14.8%) recurrences developed at a median follow-up of 60.7 months. A higher clinical T stage (hazard ratio [HR] = 4.165; P = 0.005.), a higher SR (HR = 1.114; P = 0.002.) and AR (HR = 1.064; P <  0.001.) values at pre-NAC SE imaging were independently associated with poorer RFS. CONCLUSION: SE imaging features have the potential to early predict pCR and RFS in LABC patients undergoing NAC, and then may offer valuable predictive information to guide personalized treatment.


Breast Neoplasms , Elasticity Imaging Techniques , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Neoadjuvant Therapy , Ultrasonics , Retrospective Studies
2.
Int J Biol Sci ; 19(16): 5319-5336, 2023.
Article En | MEDLINE | ID: mdl-37928256

Transfer RNAs (tRNAs) impact the development and progression of various cancers, but how individual tRNAs are modulated during triple-negative breast cancer (TNBC) progression remains poorly understood. Here, we found that XPOT (Exportin-T), a nuclear export protein receptor of tRNAs, is associated with poor prognosis in breast cancer and directly orchestrates the nuclear export of a subset of tRNAs, subsequently promoting protein synthesis and proliferation of human TNBC cells. XPOT knockdown inhibited TNBC cell proliferation in vitro, and RNA-seq indicated that XPOT is involved in the completion of cytokinesis in TNBC cells. High-throughput sequencing of tRNA revealed that XPOT specifically influenced a subset of tRNA isodecoders involved in nucleocytoplasmic trafficking, including tRNA-Ala-AGC-10-1. Through codon preferential analysis and protein mass spectrometry, we found that XPOT preferentially transported nuclear tRNA-Ala-AGC-10-1 to the cytoplasm, driving the translation of TPR Repeat Protein 19 (TTC19). TTC19 is also indispensable for cytokinesis and proliferation of TNBC cells. Altogether, these findings provide a novel regulatory translation mechanism for preferential tRNA isodecoder nucleocytoplasmic transport through XPOT, which coordinates the spatial location of specific tRNA and the translation of mRNA to facilitate TNBC proliferation and progression. Targeting XPOT may be a novel therapeutic strategy for treating TNBC.


Cytokinesis , Triple Negative Breast Neoplasms , Humans , Cytokinesis/genetics , Triple Negative Breast Neoplasms/genetics , Cell Proliferation/genetics , Biological Transport , Cytoplasm , RNA, Transfer/genetics , Cell Line, Tumor , Nucleocytoplasmic Transport Proteins
3.
Angew Chem Int Ed Engl ; 62(51): e202315113, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-37937998

The protein phenotypes of extracellular vesicles (EVs) have emerged as promising biomarkers for cancer diagnosis and treatment monitoring. However, the technical challenges in rapid isolation and multiplexed molecular detection of EVs have limited their clinical practice. Herein, we developed a magnetically driven tandem chip to achieve streamlined rapid isolation and multiplexed profiling of surface protein biomarkers of EVs. Driven by magnetic force, the magnetic nanomixers not only act as tiny stir bars to promote mass transfer and enhance reaction efficiency of EVs, but also transport on communicating vessels of the tandem chip continuously and expedite the assay workflow. We designed cyclic surface enhancement of Raman scattering (SERS) tags to bind with target EVs and then release them by exonuclease I, eliminating steric hindrance and amplifying the SERS signal of multiple protein biomarkers on EVs. Due to the excellent assay performance, six breast cancer biomarkers were detected simultaneously on EVs using only 10 µL plasma within 1.5 h. The unweighted SUM signature offers great accuracy in discriminating breast cancer patients from healthy donors. Overall, the dynamic magnetic driving tandem chip offers a new avenue to advance the clinical application of EV-based liquid biopsy.


Breast Neoplasms , Extracellular Vesicles , Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Extracellular Vesicles/metabolism , Phenotype
4.
Diagnostics (Basel) ; 13(14)2023 Jul 14.
Article En | MEDLINE | ID: mdl-37510121

We aimed to explore the value of contrast-enhanced ultrasound (CEUS) in early prediction of pathologic complete response (pCR) and recurrence-free survival (RFS) in locally advanced breast cancer (LABC) patients treated with neoadjuvant chemotherapy (NAC). LABC patients who underwent CEUS before and during NAC from March 2014 to October 2018 were included and assessed. Logistic regression analysis and the Cox proportional hazards model were used to identify independent variables associated with pCR and RFS. Among 122 women, 44 underwent pCR. Molecular subtype, peak intensity (PEAK) and change in diameter were independent predictors of pCR after one cycle of NAC (area under the receiver operating characteristic curve [AUC], 0.81; 95% CI: 0.73, 0.88); Molecular subtype, PEAK and change in time to peak (TTP) were independently associated with pCR after two cycles of NAC (AUC, 0.85; 95% CI: 0.77, 0.91). A higher clinical T (hazard ratio [HR] = 4.75; 95% CI: 1.75, 12.87; p = 0.002) and N stages (HR = 3.39; 95% CI: 1.25, 9.19; p = 0.02) and a longer TTP (HR = 1.06; 95% CI: 1.01, 1.11; p = 0.02) at pre-NAC CEUS were independently associated with poorer RFS. CEUS can be used as a technique to predict pCR and RFS early in LABC patients treated with NAC.

5.
J Transl Med ; 21(1): 400, 2023 06 20.
Article En | MEDLINE | ID: mdl-37340461

BACKGROUND: Upregulation of the PD-L1 (CD274) immune checkpoint ligand on the tumor surface facilitates tumor immune escape and limits the application of immunotherapy in various cancers, including breast cancer. However, the mechanisms underlying high PD-L1 levels in cancers are still poorly understood. METHODS: Bioinformatics analyses and in vivo and in vitro experiments were carried out to assess the association between CD8+ T lymphocytes and TIMELESS (TIM) expression, and to discover the mechanisms of TIM, the transcription factor c-Myc, and PD-L1 in breast cancer cell lines. RESULTS: The circadian gene TIM enhanced PD-L1 transcription and facilitated the aggressiveness and progression of breast cancer through the intrinsic and extrinsic roles of PD-L1 overexpression. Bioinformatic analyses of our RNA sequencing data in TIM-knockdown breast cancer cells and public transcriptomic datasets showed that TIM might play an immunosuppressive role in breast cancer. We found that TIM expression was inversely associated with CD8+ T lymphocyte infiltration in human breast cancer samples and subcutaneous tumor tissues. In vivo and in vitro experiments demonstrated that TIM knockdown increased CD8+ T lymphocyte antitumor activity. Furthermore, our results showed that TIM interacts with c-Myc to enhance the transcriptional capability of PD-L1 and facilitates the aggressiveness and progression of breast cancer through the intrinsic and extrinsic roles of PD-L1 overexpression. Moreover, public database analysis suggested that high TIM levels were positively related to PD-L1 inhibitor therapeutic response. CONCLUSIONS: Mechanistically, we first found that TIM could upregulate PD-L1 by interacting with c-Myc to enhance the transcriptional capability of c-Myc to PD-L1. Altogether, our findings not only provide a novel therapeutic strategy to treat breast cancer by targeting the oncogenic effect of TIM but also indicate that TIM is a promising biomarker for predicting the benefit of anti-PD-L1 immunotherapy.


Breast Neoplasms , Female , Humans , B7-H1 Antigen/metabolism , Breast Neoplasms/genetics , CD8-Positive T-Lymphocytes , Gene Expression Profiling , Immunotherapy , MCF-7 Cells , Transcriptome
6.
Front Cardiovasc Med ; 10: 1021937, 2023.
Article En | MEDLINE | ID: mdl-36844736

Background and aim: Cardiotoxicity has become the most common cause of non-cancer death among breast cancer patients. Pyrotinib, a tyrosine kinase inhibitor targeting HER2, has been successfully used to treat breast cancer patients but has also resulted in less well-understood cardiotoxicity. This prospective, controlled, open-label, observational trial was designed to characterize pyrotinib's cardiac impacts in the neoadjuvant setting for patients with HER2-positive early or locally advanced breast cancer. Patients and methods: The EARLY-MYO-BC study will prospectively enroll HER2-positive breast cancer patients who are scheduled to receive four cycles of neoadjuvant therapy with pyrotinib or pertuzumab added to trastuzumab before radical breast cancer surgery. Patients will undergo comprehensive cardiac assessment before and after neoadjuvant therapy, including laboratory measures, electrocardiography, transthoracic echocardiography, cardiopulmonary exercise testing (CPET), and cardiac magnetic resonance (CMR). To test the non-inferiority of pyrotinib plus trastuzumab therapy to pertuzumab plus trastuzumab therapy in terms of cardiac safety, the primary endpoint will be assessed by the relative change in global longitudinal strain from baseline to completion of neoadjuvant therapy by echocardiography. The secondary endpoints include myocardial diffuse fibrosis (by T1-derived extracellular volume), myocardial edema (by T2 mapping), cardiac volumetric assessment by CMR, diastolic function (by left ventricular volume, left atrial volume, E/A, and E/E') by echocardiography, and exercise capacity by CPET. Discussion: This study will comprehensively assess the impacts of pyrotinib on myocardial structural, function, and tissue characteristics, and, furthermore, will determine whether pyrotinib plus trastuzumab is a reasonable dual HER2 blockade regimen with regard to cardiac safety. Results may provide information in selecting an appropriate anti-HER2 treatment for HER2-positive breast cancer. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT04510532.

7.
Int J Clin Pharm ; 45(1): 184-190, 2023 Feb.
Article En | MEDLINE | ID: mdl-36383338

BACKGROUND: The persistence and adherence to endocrine therapy (ET) in hormone receptor-positive (HR +) breast cancer patients remain far less than optimal. AIM: This retrospective study aimed to evaluate adherence to ET and to identify influencing factors in early-stage HR + breast cancer patients. METHOD: A stratified random sampling method was used to select patients admitted for breast cancer surgery at a university hospital in Shanghai, China. Patients who received ET medications in the hospital information system (HIS) were included. The primary outcomes were early discontinuation of and adherence to ET. Potential factors influencing the discontinuation and adherence were assessed using univariate and multivariate logistic regression analyses. RESULTS: In total, 706 patients were included, and 161 (22.8%) discontinued ET in less than five years from the first prescription. The discontinuation rates from the one-year to the five-year treatment were 5.38, 16.70, 32.27, 51.52, and 50.00%, respectively (P < 0.001). The rates of adherence (defined as medication possession ratio ≥ 80%) from the first to the fifth year were 85.18, 82.25, 82.18, 72.92, and 73.68%, respectively (P = 0.18). Age, insurance, and surgery type impacted ET discontinuation and adherence. However, the type of medication only impacted the adherence to ET. CONCLUSION: Persistence and adherence to ET in patients with breast cancer remain far from optimal and decrease over time. More attention should be paid to patients aged ≥ 70 years and those without insurance who tend to have early discontinuation of ET.


Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Retrospective Studies , Antineoplastic Agents, Hormonal/therapeutic use , Medication Adherence , China
8.
Breast Cancer Res Treat ; 197(2): 343-354, 2023 Jan.
Article En | MEDLINE | ID: mdl-36409395

PURPOSE: Whether peripheral immune cell subsets can predict pathological complete response (pCR) in breast cancer patients remains to be elucidated. We aimed to dissect the relationship between peripheral immune cell subsets and pCR. METHODS: Two hundred and twenty-six eligible patients from two prospective clinical trials (SHPD001 and SHPD002) in China were randomly divided into a training cohort and a validation cohort. The breast cancer subtypes in this study included hormone receptor (HR)-positive/human epidermal growth factor receptor 2 (HER2)-negative (n = 95), HER2-positive (n = 100), and triple negative (n = 31) breast cancer. We defined the "Neo-Peripheral Adaptive Immune Score" for neoadjuvant chemotherapy (neoPAI Score) based on the percentages of CD4 + T cells, CD8 + T cells, B cells, and the CD4 + /CD8 + ratio in peripheral blood. We also evaluated the ability of the neoPAI Score derived from tumor-infiltrating immune cells (TIICs) to predict survival by employing The Cancer Genome Atlas-Breast Cancer (TCGA-BRCA) database. RESULTS: In the training cohort, multivariate analysis showed that HR status [odds ratio (OR) 0.325; 95% confidence interval (CI) 0.135-0.761; P = 0.010], HER2 status (OR 2.657; 95% CI 1.266-5.730; P = 0.011), Ki67 index (OR 3.191; 95% CI 1.509-6.956; P = 0.003), histological grade (OR 2.297; 95% CI 1.031-5.290; P = 0.045) and neoPAI Score (OR 4.451; 95% CI 1.608-13.068; P = 0.005) were independent predictors of pCR. In the validation cohort, histological grade (OR 3.779; 95% CI 3.793-1.136 × 103; P = 0.008) and neoPAI Score (OR 90.828; 95% CI 3.827-9.843 × 103; P = 0.019) were independent predictors of pCR. The Immune Model that integrated the neoPAI Score was more accurate in predicting pCR than the Clinical Model that exclusively contained clinicopathological parameters in both cohorts. In TCGA-BRCA database, the neoPAI Score constructed from TIICs can predict the progression-free interval (P = 0.048) of breast cancer. CONCLUSION: The neoPAI Score defined by the percentages of peripheral immune cell subsets could be used as a potential biomarker for neoadjuvant chemotherapy efficacy.


Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Prospective Studies , Neoadjuvant Therapy , Disease-Free Survival , Receptor, ErbB-2/metabolism , Remission Induction , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
9.
Nat Commun ; 13(1): 6685, 2022 11 05.
Article En | MEDLINE | ID: mdl-36335126

Single cell analysis is crucial for elucidating cellular diversity and heterogeneity as well as for medical diagnostics operating at the ultimate detection limit. Although superbly sensitive biosensors have been developed using the strongly enhanced evanescent fields provided by optical microcavities, real-time quantification of intracellular molecules remains challenging due to the extreme low quantity and limitations of the current techniques. Here, we introduce an active-mode optical microcavity sensing stage with enhanced sensitivity that operates via Förster resonant energy transferring (FRET) mechanism. The mutual effects of optical microcavity and FRET greatly enhances the sensing performance by four orders of magnitude compared to pure Whispering gallery mode (WGM) microcavity sensing system. We demonstrate distinct sensing mechanism of FRET-WGM from pure WGM. Predicted lasing wavelengths of both donor and acceptor by theoretical calculations are in perfect agreement with the experimental data. The proposed sensor enables quantitative molecular analysis at single cell resolution, and real-time monitoring of intracellular molecules over extended periods while maintaining the cell viability. By achieving high sensitivity at single cell level, our approach provides a path toward FRET-enhanced real-time quantitative analysis of intracellular molecules.


Biosensing Techniques , Fluorescence Resonance Energy Transfer , Biosensing Techniques/methods
11.
Clin Cancer Res ; 28(17): 3677-3685, 2022 09 01.
Article En | MEDLINE | ID: mdl-35713517

PURPOSE: Despite accumulating evidence on dual blockade of HER2 for locally advanced HER2-positive breast cancer, no robust evidence supports the addition of pyrotinib to trastuzumab in the neoadjuvant setting. The NeoATP trial aimed to evaluate the efficacy and safety of pyrotinib with neoadjuvant trastuzumab and chemotherapy. PATIENTS AND METHODS: The phase II NeoATP trial included female patients with histologically confirmed stage IIA to IIIC and HER2-positive primary invasive breast cancer. Eligible patients received pyrotinib and trastuzumab with weekly paclitaxel-cisplatin neoadjuvant chemotherapy for four cycles. The primary endpoint was pathologic complete response (pCR; ypT0 ypN0) rate. Key secondary endpoints included locoregional pCR (ypT0/is ypN0) rate, biomarker analysis, and safety. RESULTS: Among 53 enrolled patients (median age, 47 years; 73.58% stage III), 52 completed the study treatment and surgery. Overall, 37 patients (69.81%) achieved pCR. For women with hormone receptor-negative and -positive tumors, the pCR rates were 85.71% and 59.38% (P = 0.041), while the corresponding rates were 69.23% and 70.00%, respectively, for those with and without PIK3CA mutation (P = 0.958). The most frequently reported Grade 3 to 4 adverse events were diarrhea (45.28%), leukopenia (39.62%), and neutropenia (32.08%). No deaths occurred, and no left ventricular ejection fraction <50% or >10 points drop from baseline to before surgery was reported. CONCLUSIONS: The addition of pyrotinib to trastuzumab plus chemotherapy is an efficacious and safe regimen for patients with HER2-positive locally advanced breast cancer in the neoadjuvant setting. The randomized controlled clinical trial is warranted to validate our results.


Breast Neoplasms , Neoadjuvant Therapy , Acrylamides , Aminoquinolines , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Humans , Middle Aged , Neoadjuvant Therapy/methods , Receptor, ErbB-2/genetics , Receptor, ErbB-2/therapeutic use , Trastuzumab , Treatment Outcome
12.
Int J Cancer ; 150(10): 1664-1676, 2022 05 15.
Article En | MEDLINE | ID: mdl-34957551

CYP2D6 gene polymorphism has a profound impact upon the effect of tamoxifen as adjuvant endocrine therapy in breast cancer. However, it had never been reported whether the adverse drug reactions vary by CYP2D6 metabolic status for patients treated with tamoxifen or toremifene. We conducted a retrospective study in breast cancer patients to investigate the impact of CYP2D6 metabolic status on liver dysfunction events, gynecological events and dyslipidemia events. According to CYP2D6*10 (100C → T) genotype, the enrolled patients were further categorized into four cohorts (extensive metabolizers taking tamoxifen [EM + TAM], extensive metabolizers taking toremifene [EM + TOR], intermediate metabolizers taking tamoxifen [IM + TAM], and intermediate metabolizers taking toremifene [IM + TOR]). A total of 192 patients were included in the study, with a median follow-up time of 26.2 months. In EM + TAM cohort, the risks of liver dysfunction events (P = .004) and gynecological events (P = .004) were significantly higher compared to EM + TOR cohort. In IM + TAM cohort, the risks of liver dysfunction events (P = .14) and gynecological events (P = .99) were not significantly different from IM + TOR cohort. A significant decrease of total cholesterol was observed in EM + TAM cohort around 1 year after taking tamoxifen (P < .001). Significant interactions between CYP2D6 metabolic status and endocrine agents were observed in terms of liver dysfunction events (P-interaction = .007) and gynecological events (P-interaction = .026). These findings suggested that CYP2D6 gene polymorphism played a significant role in predicting liver dysfunction, gynecological diseases and lipid metabolism changes among patients taking tamoxifen or toremifene.


Breast Neoplasms , Drug-Related Side Effects and Adverse Reactions , Antineoplastic Agents, Hormonal/adverse effects , Breast Neoplasms/chemically induced , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cohort Studies , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Female , Genotype , Humans , Retrospective Studies , Tamoxifen/adverse effects , Toremifene/adverse effects
13.
Adv Sci (Weinh) ; 9(2): e2102405, 2022 01.
Article En | MEDLINE | ID: mdl-34741446

The accurate positioning of sentinel lymph node (SLN) by tracers during surgery is an important prerequisite for SLN biopsy. A major problem of traditional tracers in SLN biopsy is the short surgery window due to the fast diffusion of tracers through the lymphatics, resulting in a misjudgment between SLN and second echelon lymph node (2nd LN). Here, a nontoxic Raman nanoparticle tracer, termed gap-enhanced Raman tags (GERTs), for the accurate intraoperative positioning of SLNs with a sufficient surgical time window is designed. In white New Zealand rabbit models, GERTs enable precise identification of SLNs within 10 min, as well as provide the surgeon with a more than 4 h time window to differentiate SLN and 2nd LN. In addition, the ultrahigh sensitivity of GERTs (detection limit is 0.5 × 10-12 m) allows detection of labeled SLNs before surgery, thereby providing preoperative positioning information for minimally invasive surgery. Comprehensive biosafety evaluations carried out in the context of the Food and Drug Administration and International Standard Organization demonstrate no significant toxicity of GERTs, which supports a promising clinical translation opportunity of GERTs for precise SLN identification in breast cancer.


Breast Neoplasms/diagnostic imaging , Monitoring, Intraoperative/methods , Sentinel Lymph Node Biopsy/methods , Sentinel Lymph Node/diagnostic imaging , Spectrum Analysis, Raman/methods , Animals , Disease Models, Animal , Female , Nanoparticles , Rabbits
14.
Nat Commun ; 12(1): 5764, 2021 10 01.
Article En | MEDLINE | ID: mdl-34599187

Regulatory T (Treg) cells are one of the major immunosuppressive cell types in cancer and a potential target for immunotherapy, but targeting tumor-infiltrating (TI) Treg cells has been challenging. Here, using single-cell RNA sequencing of immune cells from renal clear cell carcinoma (ccRCC) patients, we identify two distinct transcriptional fates for TI Treg cells, Fate-1 and Fate-2. The Fate-1 signature is associated with a poorer prognosis in ccRCC and several other solid cancers. CD177, a cell surface protein normally expressed on neutrophil, is specifically expressed on Fate-1 TI Treg cells in several solid cancer types, but not on other TI or peripheral Treg cells. Mechanistically, blocking CD177 reduces the suppressive activity of Treg cells in vitro, while Treg-specific deletion of Cd177 leads to decreased tumor growth and reduced TI Treg frequency in mice. Our results thus uncover a functional CD177+ TI Treg population that may serve as a target for TI Treg-specific immunotherapy.


GPI-Linked Proteins/metabolism , Homeostasis , Isoantigens/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Receptors, Cell Surface/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Base Sequence , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , GPI-Linked Proteins/deficiency , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Mice, Knockout , Prognosis , Receptors, Cell Surface/deficiency , Single-Cell Analysis , Transcription, Genetic
15.
Front Cell Dev Biol ; 9: 729965, 2021.
Article En | MEDLINE | ID: mdl-34595177

Hypoxia-induced chemotherapy resistance is the main hindrance for solid tumor treatment. Hypoxia inducible factor-1α (HIF1α), an adaptive gene of hypoxia condition, played an important role in affecting chemotherapy sensitivity for many cancer types and various therapeutic regimens. This study focused on the impact of HIF1α on predicting response and survival of taxane-based neoadjuvant therapy (NAT) for breast cancer (BC) patients and the concrete mechanism that HIF1α mediated paclitaxel chemo-insensitivity. We evaluated HIF1α expression immunohistochemically from biopsies of 108 BC patients receiving paclitaxel-cisplatin NAT. Univariate and multivariate logistic regression analysis revealed that high HIF1α expression led to lower rate of pathological complete response (pCR) and worse prognosis. Analysis of GEO datasets also indicated negative association between HIF1α expression and response of taxane-based NAT in BC patients. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of differential expression genes (DEGs) in different HIF1α expression groups from TCGA database showed that HIF1α participated in interleukin 17 (IL-17) signaling pathway. Correlation analysis suggested that HIF1α was positively related to the IL-17 pathway. CXC motif chemokine ligand 10 (CXCL10) was the only DEG in the IL-17 pathway inversely relating to NAT response. Experiments in vitro verified that HIF1α/IL-17 pathway influences paclitaxel sensitivity to BC cells. Correlation analysis between HIF1α/IL-17A/CXCL10 and infiltration of immune cells in BC uncovered that high expression of all the above three genes were positively correlated to neutrophil infiltration in BC. Collectively, our findings shed novel insight into the mechanism of chemotherapy resistance and implied that HIF1α inhibitor may be a promising drug combined with traditional chemotherapeutic drug to increase the chemotherapy efficacy.

16.
EBioMedicine ; 71: 103560, 2021 Sep.
Article En | MEDLINE | ID: mdl-34482070

BACKGROUND: Recent evidence shows that inducing ferroptosis may improve efficacy of tumor therapy. However, ferroptosis-related genes have been little studied in patients with breast cancer especially in the neoadjuvant setting. ACSL4 and GPX4 have been well established as the positive and negative regulator of ferroptosis, respectively. This study aimed to explore the predictive value of ACSL4 and GPX4 for patients with breast cancer administered neoadjuvant chemotherapy. METHODS: This study included patients treated with paclitaxel-cisplatin-based neoadjuvant chemotherapy. Immunohistochemistry staining of ACSL4 and GPX4 was carried out on the core needle biopsy specimens. Logistic regression was performed to explore the predictive biomarkers of pathological complete response (pCR). Survival analyses were examined by log-rank test and Cox proportional hazard regression. FINDINGS: A total of 199 patients were included for the analyses. Both ACSL4 expression and ACSL4/GPX4 combination status could serve as independent predictive factors for pCR. The interaction for pCR was observed between ACSL4 and clinical tumor stage. Besides, ACSL4 expression, GPX4 expression, and their combination status were independent prognostic factors for disease-free survival. Analyses of the Kaplan-Meier Plotter database suggested that higher ACSL4 expression is related to better overall survival, and higher GPX4 expression is related to better distant metastasis-free survival. Pathway analyses revealed that ACSL4 and GPX4 might function in crucial pathways including apoptosis, autophagy, cell adhesion, lipid metabolism, etc. INTERPRETATION: This study revealed the critical value of ACSL4 and GPX4 serving as novel predictive and prognostic biomarkers for patients with breast cancer receiving neoadjuvant chemotherapy. It might be a novel strategy to induce ferroptosis to promote chemosensitivity. Future studies are required to elucidate the potential mechanisms. FUNDING: This work was supported by Shanghai Natural Science Foundation [grant number 19ZR1431100], Clinical Research Plan of Shanghai Hospital Development Center [grant numbers SHDC2020CR3003A, 16CR3065B, and 12016231], Shanghai "Rising Stars of Medical Talent" Youth Development Program for Youth Medical Talents - Specialist Program [grant number 2018-15], Shanghai "Rising Stars of Medical Talent" Youth Development Program for Outstanding Youth Medical Talents [grant number 2018-16], Shanghai Collaborative Innovation Center for Translational Medicine [grant number TM201908], Multidisciplinary Cross Research Foundation of Shanghai Jiao Tong University [grant numbers YG2017QN49, ZH2018QNA42, and YG2019QNA28], Nurturing Fund of Renji Hospital [grant numbers PYMDT-002, PY2018-IIC-01, PY2018-III-15, and PYIII20-09], Science and Technology Commission of Shanghai Municipality [grant numbers 20DZ2201600 and 15JC1402700], and Shanghai Municipal Key Clinical Specialty.


Breast Neoplasms/genetics , Breast Neoplasms/mortality , Coenzyme A Ligases/genetics , Ferroptosis/genetics , Gene Expression Regulation, Neoplastic , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor , Biopsy , Breast Neoplasms/diagnosis , Breast Neoplasms/drug therapy , Cell Line, Tumor , Computational Biology , Databases, Genetic , Female , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Middle Aged , Neoadjuvant Therapy , Neoplasm Staging , Odds Ratio , Prognosis , Treatment Outcome , Young Adult
17.
EClinicalMedicine ; 38: 101031, 2021 Aug.
Article En | MEDLINE | ID: mdl-34337367

BACKGROUND: Homologous recombination deficiency is associated with platinum-based chemosensitivity, whereas few studies reported the predictive value of family history of cancer for breast cancer in the neoadjuvant setting. This study aimed to construct a novel family history scoring system and to explore its association with clinical outcomes for patients with breast cancer receiving neoadjuvant platinum-based chemotherapy. METHODS: This study included 262 patients with locally advanced breast cancer enrolled in the SHPD001 and SHPD002 trials from October 2013 to June 2018. The Neo-Family History Score (NeoFHS) was calculated according to cancer type, age at diagnosis, kinship, and number of affected relatives. FINDINGS: Clinical tumor stage (p=0·048), estrogen receptor status (p=0·001), progesterone receptor status (p=0·036), human epidermal growth factor receptor 2 status (p=0·013), and molecular subtype (p=0·016) were significantly related to NeoFHS. NeoFHS could serve as an independent predictive factor of pathological complete response (pCR) (OR=2·262, 95% CI 1·159-4·414, p=0·017) and an independent prognostic factor of relapse-free survival (adjusted HR=0·305, 95% CI 0·102-0·910, p=0·033). Alopecia (p=0·001), nausea (p=0·001), peripheral neuropathy (p=0·018), diarrhea (p=0·026), constipation (p=0·037) of any grade and leukopenia of grade 3 or greater (p=0·005) were more common in patients with higher NeoFHS. INTERPRETATION: NeoFHS is a practical and effective biomarker for predicting not only pCR and survival outcomes but also chemotherapy-induced adverse events for neoadjuvant platinum-based chemotherapy in breast cancer. It may help screen candidate responders and guide safety managements. FUNDING: Shanghai Natural Science Foundation [grant number 19ZR1431100], Clinical Research Plan of Shanghai Hospital Development Center [grant numbers SHDC2020CR3003A, 16CR3065B, and 12016231], Shanghai "Rising Stars of Medical Talent" Youth Development Program for Youth Medical Talents - Specialist Program [grant number 2018-15], Shanghai "Rising Stars of Medical Talent" Youth Development Program for Outstanding Youth Medical Talents [grant number 2018-16], Shanghai Collaborative Innovation Center for Translational Medicine [grant number TM201908], Multidisciplinary Cross Research Foundation of Shanghai Jiao Tong University [grant numbers YG2017QN49, ZH2018QNA42, and YG2019QNA28], Nurturing Fund of Renji Hospital [grant numbers PYMDT-002, PY2018-IIC-01, PY2018-III-15, and PYIII20-09], Science and Technology Commission of Shanghai Municipality [grant numbers 20DZ2201600 and 15JC1402700], and Shanghai Municipal Key Clinical Specialty.

18.
Gland Surg ; 10(6): 1899-1909, 2021 Jun.
Article En | MEDLINE | ID: mdl-34268074

BACKGROUND: The expression and function of long noncoding RNA (lncRNA) LOC100505851 in breast cancer are still unknown. We aimed to examine the expression of lncRNA LOC100505851 in breast cancer and adjacent tissues and preliminarily explore its predictive value and function in breast cancer patients receiving neoadjuvant therapy (NAT). METHODS: The expression of lncRNA LOC100505851 was tested by qRT-PCR. The correlation between LOC100505851 expression and clinicopathological factors as well as pathological complete response (pCR) was analyzed by chi-squared test and logistic regression, respectively. The online database Kaplan-Meier plotter (KM plotter) was used to compare relapse-free survival (RFS) and overall survival (OS) between groups with different LOC100505851 expression levels. Subcellular localization of LOC100505851 was determined by nuclear and cytoplasmic extraction. A bioinformatics tool was used to predict RNA-binding proteins (RBPs) and interaction among these proteins. RESULTS: LncRNA LOC100505851 was significantly expressed at lower levels in cancer tissues than in adjacent tissues (P<0.001). Its expression was related to human epidermal growth factor receptor 2 (HER2) expression (P=0.003) and molecular subtype based on immunohistochemistry (P=0.001). Patients with high LOC100505851 expression were prone to pCR (OR =3.077, 95% CI: 1.042-9.086, P=0.042) and better RFS (HR =0.68, 95% CI: 0.59-0.79, P<0.001) and OS (HR =0.60, 95% CI: 0.43-0.84, P=0.0026) according to the online database KM plotter. The subcellular localization of LOC100505851 was in the nucleus, and its binding proteins were predicted by bioinformatics tools. CONCLUSIONS: LncRNA LOC100505851 was located mainly in the nucleus and was significantly downregulated in breast cancers. Its expression was related to a higher pCR rate and better RFS and OS, indicating its potential value as a novel predictive and prognostic biomarker in breast cancer.

19.
J Exp Clin Cancer Res ; 40(1): 205, 2021 Jun 23.
Article En | MEDLINE | ID: mdl-34162418

BACKGROUND: Triple negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis and lack of effective treatment target. Here we screened differentially expressed lncRNAs through bioinformatics analysis and identified CARMN as a downregulated lncRNA which is lowest expressed in TNBC. We aimed to identify the potential role and molecular mechanisms of CARMN in TNBC. METHODS: Predictive value of CARMN was explored in breast cancer cohorts. TNBC cell lines with CARMN overexpression or CARMN silence and were used for in vitro and in vivo experiments. RNA-seq of CARMN overexpressed cells was performed for exploring downstream of CARMN. RESULTS: CARMN is downregulated at different phase of malignant transformation of breast tissue. CARMN can predict both better prognosis and higher response rate of cisplatin-based neoadjuvant chemotherapy in breast cancer. A nomogram is built to predict cisplatin-based chemotherapy response in breast cancer. Through in vitro and in vivo studies, we confirmed CARMN can also inhibit tumorigenesis and enhance sensitivity to cisplatin in TNBC cells. RNA-seq and further experiments revealed CARMN can inhibit DNA replication. MCM5, an important DNA replication initiation factor, is the most downregulated gene in DNA replication pathway following CARMN overexpression. We confirmed CARMN can produce miR143-3p from its exon5 which is DROSHA and DICER dependent, resulting binding and decrease of MCM5. Moreover, suppressing miR143-3p can weaken function of CARMN in suppressing tumorigenesis and promoting chemosensitivity. CONCLUSIONS: Our results indicated lncRNA CARMN is a predictive biomarker of better prognosis and enhanced cisplatin sensitivity in TNBC. CARMN is the host gene of miR143-3p which downregulates MCM5, causing inhibited DNA replication.


Cell Cycle Proteins/genetics , Down-Regulation , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Triple Negative Breast Neoplasms/pathology , Adult , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cisplatin/pharmacology , Clinical Trials, Phase III as Topic , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mice , Middle Aged , Nomograms , Prognosis , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics
20.
Front Oncol ; 11: 604319, 2021.
Article En | MEDLINE | ID: mdl-33738251

OBJECTIVE: Linc00665 is a novel long non-coding RNA that can promote the progression of breast cancer, but its value in predicting the efficacy of neoadjuvant chemotherapy (NAC) for breast cancer has not been reported. We aim to analyze the correlation between Linc00665 expression and pathological complete response (pCR) in breast cancer patients. MATERIALS AND METHODS: The present study examined the predictive role of Linc00665 expression in pCR after NAC using both univariate and multivariate logistic regression analyses. Receiver operating characteristic (ROC) curve and area under curve (AUC) were utilized to evaluate the performance of Linc00665 in predicting pCR. The Kyoto Encyclopedia of Gene and Genome (KEGG) analysis and Gene Set Enrichment Analysis (GSEA) were also conducted to determine the biological processes where Linc00665 may participate in. RESULTS: The present study study totally enrolled 102 breast cancer patients. The univariate analysis showed that Linc00665 level, human epidermal growth factor receptor 2 (HER2) status and hormone receptor (HR) status were correlated with pCR. The multivariate analysis showed that Linc00665 expression was an independent predictor of pCR (OR = 0.351, 95% CI: 0.125-0.936, P = 0.040), especially in patients with HR-positive/HER2-negative subtype (OR = 0.272, 95% CI: 0.104-0.664, P = 0.005). The KEGG analysis indicated that Linc00665 may be involved in drug metabolism. The GSEA analysis revealed that Linc00665 is correlated to DNA damage repair. CONCLUSION: Linc00665 may be a potential novel predictive biomarker for breast cancer in NAC, especially for HR-positive/HER2-negative patients.

...