Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202407398, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082226

RESUMEN

As the most advanced non-viral delivery system, lipid nanoparticles (LNPs) were approved by the FDA, propelling the advancements of gene therapy. However, their clinical applications are hampered by the potential immunogenicity of the lipid components that trigger immune-related adverse events, like inflammation and allergy. Herein, we formulate various dLNPs with diminished immunogenicity by incorporating dexamethasone (Dex) into liver-, spleen-, and lung-targeting LNPs formulations that exhibit excellent abilities to target specific organs and deliver various types of RNA, such as mRNA and siRNA. In vivo investigations demonstrate unparalleled advantages in safety compared to conventional LNPs, showing promising potential in the development of RNA therapeutics. Intriguingly, the encapsulation of runt-related transcription factor-1 siRNA (siRUNX1) into lung-targeting dLNPs (dLNPs@siRUNX1) demonstrates remarkable advantages in the treatment of pulmonary fibrosis through the synergy of gene therapy and drug therapy. This research establishes secure and universal platforms for the precise delivery of nucleic acid therapeutics, showcasing promising clinical applications in gene therapy.

2.
Angew Chem Int Ed Engl ; 63(13): e202318515, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38320193

RESUMEN

Insufficient accumulation of lipid nanoparticles (LNPs)-based mRNA vaccines in antigen presenting cells remains a key barrier to eliciting potent antitumor immune responses. Herein, we develop dendritic cells (DCs) targeting LNPs by taking advantage of mannose receptor-mediated endocytosis. Efficient delivery of mRNA to DCs is achieved in vitro and in vivo utilizing the sweet LNPs (STLNPs-Man). Intramuscular injection of mRNA vaccine (STLNPs-Man@mRNAOVA ) results in a four-fold higher uptake by DCs in comparison with commercially used LNPs. Benefiting from its DCs targeting ability, STLNPs-Man@mRNAOVA significantly promotes the antitumor performances, showing a comparable therapeutic efficacy by using one-fifth of the injection dosage as the vaccine prepared from normal LNPs, thus remarkably avoiding the side effects brought by conventional mRNA vaccines. More intriguingly, STLNPs-Man@mRNAOVA exhibits the ability to downregulate the expression of cytotoxic T-lymphocyte-associated protein 4 on T cells due to the blockade of CD206/CD45 axis, showing brilliant potentials in promoting antitumor efficacy combined with immune checkpoint blockade therapy.


Asunto(s)
Vacunas contra el Cáncer , Liposomas , Nanopartículas , Neoplasias , Humanos , Presentación de Antígeno , Vacunas de ARNm , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Dendríticas/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo
3.
Transl Oncol ; 14(1): 100981, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33395744

RESUMEN

Single-cell transcriptome analysis has provided detailed insights into the ecosystem of liver cancer. However, the changes of the cellular and molecular components of liver tumors in comparison with normal livers have not been described at single-cell level. Here, we performed an integrative single-cell analysis of both normal livers and liver cancers. Principal component analysis was firstly performed to delineate the cell lineages in liver tissues. Differential gene expression within major cell types were then analyzed between tumor and normal samples, thus resolved the cell type-specific molecular alterations in liver cancer development. Moreover, a comparison between liver cancer derived versus normal liver derived cell components revealed that two subpopulations of fibroblasts were exclusively expanded in liver cancer tissues. By further defining subpopulation-specific gene signatures, characterizing their spatial distribution in tumor tissues and investigating their clinical significance, we found that the SPARCL1 positive fibroblasts, representing a group of tumor vessel associated fibroblasts, were related to reduced vascular invasion and prolonged survival of liver cancer patients. Through establishing an in-vitro endothelial-to-mesenchymal transition model, we verified the conversion of the fetal liver sinusoidal endothelial cells into the fibroblast-like cells, demonstrating a possible endothelial cell origination of the SPARCL1 positive fibroblasts. Our study provides new insights into the cell atlas alteration, especially the expanded fibroblasts in liver cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA