Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 153: 113412, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36076537

RESUMEN

Microglia, resident macrophages that act as the brain's innate immune cells, play a key role in initiating a defense response to the infection or neuroinflammation of the host. Once a broad spectrum of dangers is confronted, microglia get triggered and transform their role against immune stimuli. Recent studies have shown that remarkable metabolic changes present in activated microglia affect their immune function. Given that the important role of microglia in the progression of neurodegeneration is widely recognized, it is crucial to know whether metabolic reprogramming of microglia also presents in neurodegeneration and how this may influence their role in neurodegeneration progression. This paper provides an overview of the metabolic reprogramming of microglia, the major pathways involved in recent advances in five major neurodegenerative diseases of aging (NDAs), including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD), etc. And then we elucidated their impacts on the disease progression of neurodegeneration. Furthermore, growing evidence suggests that microbiota-derived metabolites, including acetate, N6-carboxymethyllysine (CML), and isoamylamine (IAA), regulate metabolic pathways and functions of microglia, and play a crucial role in cellular homeostasis. We shed light on this topic and concluded these metabolites are potential therapeutic targets for NDAs.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Macrófagos , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/metabolismo
2.
Front Microbiol ; 13: 947757, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36016788

RESUMEN

In recent years, many reports focus on the hepatotoxicity of Gynura segetum root extract (GSrE), but the interaction between GSrE and the gut microbiota is still unclear. This study investigated the mechanism of GSrE-induced hepatotoxicity of different doses and exposure durations by combining metabolomics and gut microbiota analysis. SD rats were divided into 3 groups: blank, low-dose (7.5 g/kg), and high-dose (15 g/kg) groups. Urine and feces samples were collected on day 0, day 10, and day 21. Metabolomics based on gas chromatography-mass spectrometry (GC-MS) was carried out to identify metabolites and metabolic pathways. 16S rDNA gene sequencing was applied to investigate the composition of gut microbiota before and after GSrE-induced hepatotoxicity. Finally, a correlation analysis of metabolites and gut microbiota was performed. Differential metabolites in urine and feces involved amino acids, carbohydrates, lipids, organic acids, and short chain fatty acids. Among them, L-valine, L-proline, DL-arabinose, pentanoic acid, D-allose, and D-glucose in urine and D-lactic acid and glycerol in fecal metabolites depended on the exposure of time and dose. In addition, 16S rDNA sequencing analysis revealed that GSrE-induced hepatotoxicity significantly altered the composition of gut microbiota, namely, f_Muribaculaceae_Unclassified, Lactobacillus, Bacteroides, Lachnospiraceae_NK4A136_group, f_Ruminococcaceae_Unclassified, Prevotellaceae_Ga6A1_group, and Escherichia-Shigella. The correlation analysis between gut microbiota and differential metabolites showed the crosstalk between the gut microbiota and metabolism in host involving energy, lipid, and amino acid metabolisms. In summary, our findings revealed that peripheral metabolism and gut microbiota disorders were time- and dose-related and the correlation between gut microbiota and metabolites in GSrE-induced hepatotoxicity.

3.
Front Microbiol ; 13: 908011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832821

RESUMEN

Non-alcoholic fatty liver disease (NAFLD), an emerging global health problem affecting 25-30% of the total population, refers to excessive lipid accumulation in the liver accompanied by insulin resistance (IR) without significant alcohol intake. The increasing prevalence of NAFLD will lead to an increasing number of cirrhosis patients, as well as hepatocellular carcinoma (HCC) requiring liver transplantation, while the current treatments for NAFLD and its advanced diseases are suboptimal. Accordingly, it is necessary to find signaling pathways and targets related to the pathogenesis of NAFLD for the development of novel drugs. A large number of studies and reviews have described the critical roles of bile acids (BAs) and their receptors in the pathogenesis of NAFLD. The gut microbiota (GM), whose composition varies between healthy and NAFLD patients, promotes the transformation of more than 50 secondary bile acids and is involved in the pathophysiology of NAFLD through the GM-BAs axis. Correspondingly, BAs inhibit the overgrowth of GM and maintain a healthy gut through their antibacterial effects. Here we review the biosynthesis, enterohepatic circulation, and major receptors of BAs, as well as the relationship of GM, BAs, and the pathogenesis of NAFLD in different disease progression. This article also reviews several therapeutic approaches for the management and prevention of NAFLD targeting the GM-BAs axis.

4.
Aging Dis ; 13(4): 1127-1145, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35855329

RESUMEN

Alzheimer's disease (AD) is usually manifested in patients with dementia, accompanied by anxiety and other mental symptoms. Emerging evidence from humans indicates that people who suffer from anxiety in their early life are more likely to develop AD in later life. Mitochondria, the prominent organelles of energy production in the brain, have crucial physiological significance for the brain, requiring considerable energy to maintain its normal physiological activities. Net reactive oxygen species (ROS) was produced by mitochondrial impairment, in which oxidative stress is also included, and the production of ROS is mostly more than that of removal. In this paper, we propose that as a critical process in brain pathology, mitochondrial dysfunction caused by anxiety triggering oxidative stress might be a possible mechanism that links early life anxiety to AD in later life. Several pivotal physiological roles of mitochondria are reviewed, including functions regulating glucose homeostasis, which may disrupt in oxidative stress. Increased levels of oxidative stress are constantly shown in anxiety disorder patients, and antioxidant drugs have promise in treating anxiety. In the early stages of AD, mitochondrial dysfunction is concentrated around senile plaques, a landmark lesion composed of aggregated Aß and Tau protein. In turn, the accumulated Aß and Tau disrupts mitochondrial activity, and the tricky physiological processes of mitochondria might be significant to the course of AD. In the end, we conclude that mitochondria might present as one of the novel therapeutic targets to block oxidative stress in patients with anxiety disorders to prevent AD in the early stage.

5.
Front Microbiol ; 13: 1047121, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36762099

RESUMEN

Aim: The treatment of Alzheimer's disease (AD) is still a worldwide problem due to the unclear pathogenesis and lack of effective therapeutic targets. In recent years, metabolomic and gut microbiome changes in patients with AD have received increasing attention, and the microbiome-gut-brain (MGB) axis has been proposed as a new hypothesis for its etiology. Considering that electroacupuncture (EA) efficiently moderates cognitive deficits in AD and its mechanisms remain poorly understood, especially regarding its effects on the gut microbiota, we performed urinary metabolomic and microbial community profiling on EA-treated AD model mice, presenilin 1/2 conditional double knockout (PS cDKO) mice, to observe the effect of EA treatment on the gut microbiota in AD and find the connection between affected gut microbiota and metabolites. Materials and methods: After 30 days of EA treatment, the recognition memory ability of PS cDKO mice was evaluated by the Y maze and the novel object recognition task. Urinary metabolomic profiling was conducted with the untargeted GC-MS method, and 16S rRNA sequence analysis was applied to analyze the microbial community. In addition, the association between differential urinary metabolites and gut microbiota was clarified by Spearman's correlation coefficient analysis. Key findings: In addition to reversed cognitive deficits, the urinary metabolome and gut microbiota of PS cDKO mice were altered as a result of EA treatment. Notably, the increased level of isovalerylglycine and the decreased levels of glycine and threonic acid in the urine of PS cDKO mice were reversed by EA treatment, which is involved in glyoxylate and dicarboxylate metabolism, as well as glycine, serine, and threonine metabolism. In addition to significantly enhancing the diversity and richness of the microbial community, EA treatment significantly increased the abundance of the genus Mucispirillum, while displaying no remarkable effect on the other major altered gut microbiota in PS cDKO mice, norank_f_Muribaculaceae, Lactobacillus, and Lachnospiraceae_NK4A136 group. There was a significant correlation between differential urinary metabolites and differential gut microbiota. Significance: Electroacupuncture alleviates cognitive deficits in AD by modulating gut microbiota and metabolites. Mucispirillum might play an important role in the underlying mechanism of EA treatment. Our study provides a reference for future treatment of AD from the MGB axis.

6.
J Transl Med ; 19(1): 351, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34399766

RESUMEN

BACKGROUND: Given the clinical low efficient treatment based on mono-brain-target design in Alzheimer's disease (AD) and an increasing emphasis on microbiome-gut-brain axis which was considered as a crucial pathway to affect the progress of AD along with metabolic changes, integrative metabolomic signatures and microbiotic community profilings were applied on the early age (2-month) and mature age (6-month) of presenilin1/2 conditional double knockout (PS cDKO) mice which exhibit a series of AD-like phenotypes, comparing with gender and age-matched C57BL/6 wild-type (WT) mice to clarify the relationship between microbiota and metabolomic changes during the disease progression of AD. MATERIALS AND METHODS: Urinary and fecal samples from PS cDKO mice and gender-matched C57BL/6 wild-type (WT) mice both at age of 2 and 6 months were collected. Urinary metabolomic signatures were measured by the gas chromatography-time-of-flight mass spectrometer, as well as 16S rRNA sequence analysis was performed to analyse the microbiota composition at both ages. Furthermore, combining microbiotic functional prediction and Spearman's correlation coefficient analysis to explore the relationship between differential urinary metabolites and gut microbiota. RESULTS: In addition to memory impairment, PS cDKO mice displayed metabolic and microbiotic changes at both of early and mature ages. By longitudinal study, xylitol and glycine were reduced at both ages. The disturbed metabolic pathways were involved in glycine, serine and threonine metabolism, glyoxylate and dicarboxylate metabolism, pentose and glucuronate interconversions, starch and sucrose metabolism, and citrate cycle, which were consistent with functional metabolic pathway predicted by the gut microbiome, including energy metabolism, lipid metabolism, glycan biosynthesis and metabolism. Besides reduced richness and evenness in gut microbiome, PS cDKO mice displayed increases in Lactobacillus, while decreases in norank_f_Muribaculaceae, Lachnospiraceae_NK4A136_group, Mucispirillum, and Odoribacter. Those altered microbiota were exceedingly associated with the levels of differential metabolites. CONCLUSIONS: The urinary metabolomics of AD may be partially mediated by the gut microbiota. The integrated analysis between gut microbes and host metabolism may provide a reference for the pathogenesis of AD.


Asunto(s)
Metabolómica , Animales , Estudios Longitudinales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Ribosómico 16S
7.
Isotopes Environ Health Stud ; 52(4-5): 529-43, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27002493

RESUMEN

The development of in situ vapour sampling methods to measure δ(2)H and δ(18)O in pore water of deep, unsaturated soil profiles, including mine tailings and waste rock, is required to improve our ability to track water migration through these deposits. To develop appropriate field sampling methods, a laboratory study was first undertaken to evaluate potential materials and sampling methods to collect and analyse vapour samples from unsaturated mine waste. Field methods were developed based on these findings and tested at two mine sites using either on-site analyses with a portable isotope laser spectrometer or sample collection and storage prior to laboratory analyses. The field sites included a series of deep (>50 m) multiport profiles within a coal waste rock dump and open wells installed in a sand tailings dyke at an oil sands mine. Laboratory results show that memory effects in sample bags and tubing require 3-5 pore volumes of vapour flushing prior to sample collection and sample storage times are limited to 24 h. Field sampling highlighted a number of challenges including the need to correct for sample humidity and in situ temperature. Best results were obtained when a portable laser spectrometer was used to measure vapour samples in situ.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua Subterránea/análisis , Movimientos del Agua , Fraccionamiento Químico , Deuterio/análisis , Monitoreo del Ambiente/instrumentación , Agua Subterránea/química , Minería , Isótopos de Oxígeno/análisis , Análisis Espectral , Presión de Vapor , Instalaciones de Eliminación de Residuos
8.
Nanoscale Res Lett ; 10(1): 385, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26437655

RESUMEN

BiPO4/Bi2S3 photocatalysts were successfully synthesized by a simple two-step hydrothermal process, which involved the initial formation of BiPO4 rod and then the attachment of Bi2S3 through ion exchange. The as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectra (UV-vis DRS). It was found that BiPO4 was regular rods with smooth surfaces. However, BiPO4/Bi2S3 heterojunction had a rough surface, which could be attributed to the attachment of Bi2S3 on the surface of BiPO4 rods. The BiPO4/Bi2S3 composite exhibited better photocatalytic performance than that of pure BiPO4 and Bi2S3 for the degradation of methylene blue (MB) and Rhodamine B (RhB) under visible light. The enhanced photocatalytic performance could be ascribed to synergistic effect of BiPO4/Bi2S3 heterojunction, in which the attached Bi2S3 nanoparticles could improve visible-light absorption and the BiPO4/Bi2S3 heterojunction suppressed the recombination of photogenerated electron-hole pairs. Our work suggested that BiPO4/Bi2S3 heterojunction could be a potential photocatalyst under visible light.

9.
Nanoscale Res Lett ; 9(1): 34, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24428848

RESUMEN

N-doped mesoporous TiO2 nanorods were fabricated by a modified and facile sol-gel approach without any templates. Ammonium nitrate was used as a raw source of N dopants, which could produce a lot of gasses such as N2, NO2, and H2O in the process of heating samples. These gasses were proved to be vitally important to form the special mesoporous structure. The samples were characterized by the powder X-ray diffraction, X-ray photoelectron spectrometer, nitrogen adsorption isotherms, scanning electron microscopy, transmission electron microscopy, and UV-visible absorption spectra. The average length and the cross section diameter of the as-prepared samples were ca. 1.5 µm and ca. 80 nm, respectively. The photocatalytic activity was evaluated by photodegradation of methylene blue (MB) in aqueous solution. The N-doped mesoporous TiO2 nanorods showed an excellent photocatalytic activity, which may be attributed to the enlarged surface area (106.4 m2 g-1) and the narrowed band gap (2.05 eV). Besides, the rod-like photocatalyst was found to be easy to recycle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA