Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 113
1.
J Chromatogr A ; 1726: 464961, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38723491

The improvement of the stability and adsorption properties of materials on targets in sample pre-treatment has long been an objective. Extensive efforts have been made to achieve this goal. In this work, metal-organic framework Ni-MOF precursors were first synthesized by solvothermal method using polyvinylpyrrolidone (PVP) as an ideal templating agent, stabiliser and nanoparticle dispersant. After carbonization and acid washing, the nanoporous carbon microspheres material (Ni@C-acid) was obtained. Compared with the material without acid treatment (Ni@C), the specific surface area, pore volume, adsorption performance of Ni@C-acid were increased. Thanks to its excellent characteristics (high stability, abundant benzene rings), Ni@C-acid was used as fiber coatings in headspace solid-phase microextraction (HS-SPME) technology for extraction and preconcentration of polycyclic aromatic hydrocarbons (PAHs) prior to gas chromatography-flame ionization detector (GC-FID) analysis. The experimental parameters of extraction temperature, extraction time, agitation speed, desorption temperature, desorption time and sodium chloride (NaCl) concentration were studied. Under optimal experimental conditions, the wide linear range (0.01-30 ng mL-1), the good correlation coefficient (0.9916-0.9984), the low detection limit (0.003-0.011 ng mL-1), and the high enrichment factor (5273-13793) were obtained. The established method was successfully used for the detection of trace PAHs in actual tea infusions samples and satisfied recoveries ranging from 80.94-118.62 % were achieved. The present work provides a simple method for the preparation of highly stable and adsorbable porous carbon microsphere materials with potential applications in the extraction of environmental pollutants.


Carbon , Limit of Detection , Metal-Organic Frameworks , Microspheres , Polycyclic Aromatic Hydrocarbons , Solid Phase Microextraction , Tea , Solid Phase Microextraction/methods , Polycyclic Aromatic Hydrocarbons/isolation & purification , Polycyclic Aromatic Hydrocarbons/analysis , Tea/chemistry , Carbon/chemistry , Metal-Organic Frameworks/chemistry , Porosity , Adsorption , Nickel/chemistry , Nickel/isolation & purification , Chromatography, Gas/methods , Reproducibility of Results
2.
J Chromatogr A ; 1711: 464450, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37871503

The three-dimensional (3D) rose-like zinc oxide (ZnO) material was prepared by a simple one-step CTAB-assisted hydrothermal strategy and used as a headspace solid-phase microextraction (HS-SPME) coating. Polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were analyzed by gas chromatography with flame ionization detector (GC-FID), and conclusively applied to ultrasensitive detection in lake and river water. Compared with one-dimensional (1D) pencil-like ZnO, the layer-by-layer petal-like structure could fully expose mass adsorption sites on the surface, which could significantly improve the adsorption. The enrichment factors with 7535-8595 for PCBs and 3855-7320 for PAHs were achieved. The established method provided a satisfactory linear range (0.005-30 ng·mL-1), coefficient (R2 > 0.9978), ultra-low limit detection (1-3 pg·mL-1), and long service life (≥ 150 times). The recoveries of 83.42-120.86 % were obtained in the real detection application of lake and river water. This work demonstrated that 3D rose-like ZnO with low cost, simple synthesis, fast extraction ability and high enrichment performance was an ideal coating material, which was hoped to enrich other compounds with similar structures with PCBs and PAHs.


Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Zinc Oxide , Polycyclic Aromatic Hydrocarbons/analysis , Polychlorinated Biphenyls/analysis , Solid Phase Microextraction/methods , Zinc , Water/chemistry
3.
Mikrochim Acta ; 190(11): 446, 2023 Oct 18.
Article En | MEDLINE | ID: mdl-37853180

Ionic liquid (IL)-modified UiO-66-NH2 composite was prepared and used as sorbent of dispersed solid-phase extraction (dSPE) for extracting trace benzoylurea insecticides (BUs) from complex environmental matrices. The IL in framework endowed the prepared material had electropositive characteristics, which can produce interaction with electron rich guest molecules, such as BUs. The high thermal and chemical stability of UiO-66-NH2/IL enabled it to be reused for 16 times without significant reduction in adsorption performance. Due to the multiple forces including π-π, hydrogen bonding, and fluorine-fluorine interaction, UiO-66-NH2/IL showed good adsorption performance, short adsorption time (20 s) and rapid desorption ability (60 s) for BUs. Under the optimal conditions, the method exhibited wide linear range (0.02-500 ng mL-1) with correlation coefficient (R2) not worse than 0.9928, high enrichment factor (252-300), and low detection limit (0.005-0.4 ng mL-1). The dispersed solid phase extraction coupling with high-performance liquid chromatography-diode array detector (dSPE-HPLC-DAD) was successfully used to detection of BUs in real environmental samples and satisfactory recoveries were obtained (80.5%±2.4-118%±3.2). The results indicated that UiO-66-NH2/IL composite can be a potential sorbent for the preconcentration of trace insecticides in environmental samples.

4.
J Chromatogr A ; 1703: 464101, 2023 Aug 16.
Article En | MEDLINE | ID: mdl-37271083

In order to better identify the hazards of pollutants, developing the analytical methods that can sensitively detect and precisely monitor the content of trace pollutants has been the constant pursuit. In this paper, a new solid phase microextraction coating-ionic liquid/metal organic framework (IL/MOF) was obtained through the IL-induced strategy and used for the solid phase microextraction (SPME) process. IL was introduced into metal-organic framework (MOF) cage based on the anion of ionic liquid could interact strongly with the zirconium nodes of UiO-66-NH2. The introduction of IL not only increased the stability of composite, the hydrophobicity of IL also changed the environment of MOF channel, providing the hydrophobic effect to the targets. The confinement effect of IL effectively improved the extraction performance of parent MOF and the extraction performance of synthesized IL/UiO-66-NH2 for phthalates (PAEs) were 1.3-3.0 times that of parent UiO-66-NH2. Thanks to the strong interaction force (hydrogen bonding interaction, π-π stacking, hydrophobic interaction force), the IL/UiO-66-NH2-coated fiber coupled with gas chromatography-mass spectrometer showed a wide linear ranges (1-5000 ng L-1) with good correlation (R2, 0.9855-0.9987), lower detection limit (0.2-0.4 ng L-1) and satisfactory recoveries (95.3-119.3%) for PAEs. This article is dedicated to provide another way to improve the extraction performance of material.


Environmental Pollutants , Ionic Liquids , Metal-Organic Frameworks , Organometallic Compounds , Phthalic Acids , Metal-Organic Frameworks/chemistry , Phthalic Acids/chemistry , Solid Phase Microextraction/methods
5.
Talanta ; 260: 124540, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37116361

Due to widespread application of benzoylurea insecticides (BUs) and its persistence in environment, the effective capture of benzoylurea insecticides residues in environment is an important issue of environmental safety monitoring. To obtain excellent adsorption performance, creating defective structure in metal-organic frameworks (MOFs) can be employed as the method for adjusting its properties. Zirconium(Ⅳ)-based MOF termed as UiO-66-30% was constructed with 2-aminoterephthalic acid (NH2-BDC) and terephthalic acid (H2BDC) as building blocks. After calcination and removal of thermal-sensitive ligand (NH2-BDC), hierarchically porous UiO-66-30% (HP-UiO-66-30%) with multistage pore structure and good stability was obtained. The unique structure of HP-UiO-66-30% endowed it to achieve instantaneous equilibrium (within 2 min) when it was used as a dispersed solid phase extraction (d-SPE) adsorbent to extract BUs from environmental samples, greatly reducing the operation time. A wide linear range (0.05-200 ng mL-1), good linearity (R2 ≥ 0.9980), low detection limits (0.01-0.03 ng mL-1) and quantification limits (0.05-0.1 ng mL-1) were obtained for BUs. In addition, the HP-UiO-66-30% material possessed the good reusability and the adsorption capacity did not change significantly over 16 adsorption-desorption cycles. Finally, the established dispersed solid phase extraction-high performance liquid chromatography-diode array detector (d-SPE-HPLC-DAD) method was successfully applied to determination of BUs residues in environmental soil samples. The results demonstrated that HP-UiO-66-30% was an excellent sorbent for extraction BUs from environmental samples.

6.
BMC Bioinformatics ; 24(1): 89, 2023 Mar 09.
Article En | MEDLINE | ID: mdl-36894886

BACKGROUND: Hepatocellular carcinoma (HCC) has a high incidence and mortality worldwide, which seriously threatens people's physical and mental health. Coagulation is closely related to the occurrence and development of HCC. Whether coagulation-related genes (CRGs) can be used as prognostic markers for HCC remains to be investigated. METHODS: Firstly, we identified differentially expressed coagulation-related genes of HCC and control samples in the datasets GSE54236, GSE102079, TCGA-LIHC, and Genecards database. Then, univariate Cox regression analysis, LASSO regression analysis, and multivariate Cox regression analysis were used to determine the key CRGs and establish the coagulation-related risk score (CRRS) prognostic model in the TCGA-LIHC dataset. The predictive capability of the CRRS model was evaluated by Kaplan-Meier survival analysis and ROC analysis. External validation was performed in the ICGC-LIRI-JP dataset. Besides, combining risk score and age, gender, grade, and stage, a nomogram was constructed to quantify the survival probability. We further analyzed the correlation between risk score and functional enrichment, pathway, and tumor immune microenvironment. RESULTS: We identified 5 key CRGs (FLVCR1, CENPE, LCAT, CYP2C9, and NQO1) and constructed the CRRS prognostic model. The overall survival (OS) of the high-risk group was shorter than that of the low-risk group. The AUC values for 1 -, 3 -, and 5-year OS in the TCGA dataset were 0.769, 0.691, and 0.674, respectively. The Cox analysis showed that CRRS was an independent prognostic factor for HCC. A nomogram established with risk score, age, gender, grade, and stage, has a better prognostic value for HCC patients. In the high-risk group, CD4+T cells memory resting, NK cells activated, and B cells naive were significantly lower. The expression levels of immune checkpoint genes in the high-risk group were generally higher than that in the low-risk group. CONCLUSIONS: The CRRS model has reliable predictive value for the prognosis of HCC patients.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Prognosis , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Nomograms , Risk Factors , Tumor Microenvironment
7.
Nanoscale ; 15(10): 5036-5043, 2023 Mar 09.
Article En | MEDLINE | ID: mdl-36799112

A combination of a semiconductor-based photosensitizer with molecular catalysts via covalent bonds is an effective way to utilize solar energy to reduce CO2 into value-added chemicals with high efficiency and selectivity. In this study, 2,2'-bpy-5,5'-dialdehyde functioned as organic ligands and were embedded into the skeleton of g-CN through imine bonds via thermal copolymerization. The introduction of 2,2'-bpy can not only chelate with earth-abundant Co as single-site catalytic centers but also can optimize the properties of original g-CN such as the enlarged specific surface area and extended visible light absorption range. The CO evolution rate of g-CN-bpy-Co can reach up to 106.3 µmol g-1 h-1 with a selectivity of 97% over proton reduction, which was 82-fold than that of g-CN-Co. The different coordination environments and valence states of cobalt were also studied simultaneously and the results showed that Co(II) exhibited superior catalytic activity towards Co(III). Control experiments demonstrated that the covalent linkage between g-CN and Co-2,2'-bpy plays a vital role in photocatalytic activity and selectivity. Besides, the CO generation rate demonstrated linear growth upon visible light irradiation up to 72 h and preferable recyclability. This research provides a new facile way to fabricate low-priced photocatalysts with high activity and selectivity and bridge homogeneous and heterogeneous catalysis.

8.
Food Chem ; 409: 135272, 2023 May 30.
Article En | MEDLINE | ID: mdl-36623357

Amino-modified Zn/Fe bimetallic metal-organic frameworks (NH2-Zn/Fe-MIL-88) were synthesized using a one-step solvothermal method with FeCl3·6H2O and Zn(NO3)2·6H2O as metal salts and 2-aminoterephthalic acid as organic ligand. The morphology of NH2-Zn/Fe-MIL-88 can be regulated from octahedral-like to spindle-like with changing molar ratios of metal salts. Using NH2-Zn/Fe-MIL-88 as sorbent, a dispersive solid-phase extraction with putting sorbents into sample solution to extract targets was developed to preconcentrate phytohormones in vegetables. To study the extraction efficiency, a series of NH2-Zn/Fe-MIL-88s with varying molar ratios of metal salts were prepared. The results indicated that NH2-Zn/Fe-MIL-88(1) presented the highest extraction efficiency (82.6 %-98.1 %) to phytohormones among all prepared NH2-Zn/Fe-MIL-88(x). The limits of detection were calculated at 0.07-0.15 ng/mL. The adsorption isotherms and kinetic parameters of NH2-Zn/Fe-MIL-88 for phytohormones were conformed to Langmuir and pseudo-second-order models. The NH2-Zn/Fe-MIL-88 as sorbent combined with HPLC was applied to detect phytohormones in cucumber and tomato samples.


Metal-Organic Frameworks , Vegetables , Salts , Plant Growth Regulators , Solid Phase Extraction , Zinc
9.
Front Neurol ; 13: 1014346, 2022.
Article En | MEDLINE | ID: mdl-36545400

Background: The incidence, prevalence, and mortality of ischemic stroke (IS) continue to rise, resulting in a serious global disease burden. The prediction models have a great value in the early prediction and diagnosis of IS. Methods: The R software was used to screen the differentially expressed genes (DEGs) of IS and control samples in the datasets GSE16561, GSE58294, and GSE37587 and analyze DEGs for enrichment analysis. The feature genes of IS were obtained by several machine learning algorithms, including the least absolute shrinkage and selector operation (LASSO) logistic regression, the support vector machine-recursive feature elimination (SVM-RFE), and the Random Forest (RF). The IS diagnostic models were constructed based on transcriptomics by machine learning and artificial neural network (ANN). Results: A total of 69 DEGs, mainly involved in immune and inflammatory responses, were identified. The pathways enriched in the IS group were complement and coagulation cascades, lysosome, PPAR signaling pathway, regulation of autophagy, and toll-like receptor signaling pathway. The feature genes selected by LASSO, SVM-RFE, and RF were 17, 10, and 12, respectively. The area under the curve (AUC) of the LASSO model in the training dataset, GSE22255, and GSE195442 was 0.969, 0.890, and 1.000. The AUC of the SVM-RFE model was 0.957, 0.805, and 1.000, respectively. The AUC of the RF model was 0.947, 0.935, and 1.000, respectively. The models have good sensitivity, specificity, and accuracy. The AUC of the LASSO+ANN, SVM-RFE+ANN, and RF+ANN models was 1.000, 0.995, and 0.997, respectively, in the training dataset. However, the AUC of LASSO+ANN, SVM-RFE+ANN, and RF+ANN models was 0.688, 0.605, and 0.619, respectively, in the GSE22255 dataset. The AUC of the LASSO+ANN and RF+ANN models was 0.740 and 0.630, respectively, in the GSE195442 dataset. In the training dataset, the sensitivity, specificity, and accuracy of the LASSO+ANN model were 1.000, 1.000, and 1.000, respectively; of the SVM-RFE+ANN model were 0.946, 0.982, and 0.964, respectively; and of the RF+ANN model were 0.964, 1.000, and 0.982, respectively. In the test datasets, the sensitivity was very satisfactory; however, the specificity and accuracy were not good. Conclusion: The LASSO, SVM-RFE, and RF models have good prediction abilities. However, the ANN model is efficient at classifying positive samples and is unsuitable at classifying negative samples.

10.
Nanomaterials (Basel) ; 12(16)2022 Aug 11.
Article En | MEDLINE | ID: mdl-36014620

Recovery phosphorus (P) from P-contaminated wastewater is an efficient and environmentally friendly mean to prevent water pollution and alleviate the P shortage crisis. In this study, oyster shell as calcium sources and peanut shells as carbon sources (mass ratio 1:1) were used to prepare a novel Ca-modified biochar (OBC) via co-pyrolysis, and its potential application after P adsorption as a P biofertilizer for soil was also investigated. The results shown that OBC had a remarkable P adsorption capacity from wastewater in a wide range of pH 4−12. The maximum P adsorption capacity of OBC was about 168.2 mg/g with adsorbent dosage 1 g/L, which was about 27.6 times that of the unmodified biochar. The adsorption isotherm and kinetic data were better described by Langmuir isotherm model (R2 > 0.986) and the pseudo second-order model (R2 > 0.975), respectively. Characterization analysis of OBC before and after P adsorption by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and specific surface area and porosity analyzer (BET) indicated that the remarkable P adsorption capacity of OBC was mainly ascribed to chemical precipitation, electrostatic adsorption, and hydrogen bonding. Pot experiment results showed that OBC after P adsorption could significantly promote the germination and growth of Spinacia, which manifested that OBC after P adsorption exhibited a good ability to be reused as P fertilizer for soil.

11.
Nanomaterials (Basel) ; 12(11)2022 May 29.
Article En | MEDLINE | ID: mdl-35683716

Sample pretreatment plays important role in the analysis and detection of trace pollutants in complex matrices, such as environmental and biological samples. The adsorption materials of sample pretreatment receive considerable attention, which has a significant effect on the sensitivity and selectivity of the analytical method. In this work, the porous hexagonal boron nitride (h-BN) was utilized as a coating material of solid-phase microextraction (SPME) to extract and preconcentrate polycyclic aromatic hydrocarbons (PAHs) prior to separation and detection with GC-FID. Attributed to the multiple interactions including hydrophobicity, hydrogen bonding and strong π-π interaction, the h-BN coating showed excellent extraction performance for PAHs. Under the optimal conditions, the method showed the linear relationship in the range of 0.1-50 ng mL-1 for acenaphthene, 0.05-50 ng mL-1 for pyrene, and 0.02-50 ng mL-1 for fluorene, phenanthrene and anthracene with a correlation coefficient (R2) not lower than 0.9910. The enrichment factors were achieved between 1526 and 4398 for PAHs with h-BN as SPME fiber coating. The detection limits were obtained in the range of 0.004-0.033 ng mL-1, which corresponds to 0.08-0.66 ng g-1 for soil. The method was successfully applied to analysis of real soil samples. The recoveries were determined between 78.0 and 120.0% for two soil samples. The results showed that h-BN material provided a promising alternative in sample pretreatment and analysis.

12.
Chem Commun (Camb) ; 58(54): 7574-7577, 2022 Jul 05.
Article En | MEDLINE | ID: mdl-35708910

Porous polydivinylbenzene microspheres with high specific surface area were prepared by distillation-precipitation polymerization, and were used as the coating material in headspace solid phase microextraction for extracting polycyclic aromatic hydrocarbons. Compared with the other reported sorbents, PDVB exhibits lower cost and higher extraction efficiency, and the enrichment factors can reach 5963-16 720.


Polycyclic Aromatic Hydrocarbons , Rivers , Solid Phase Microextraction , Styrenes , Water
13.
J Hazard Mater ; 424(Pt C): 127559, 2022 02 15.
Article En | MEDLINE | ID: mdl-34736198

Owing to their structural and functional tunability, the preparation of multivariate metal-organic frameworks (MTV-MOFs) and investigation of their potential application has become a hot topic in fields of environment and energy. To achieve more adsorption and removal performance, a series of multivariate Zr-MOFs (TCPP@MOF-808s) were prepared via mixed-ligands strategy for the first time. The morphology, as well as adsorption and removal properties of TCPP@MOF-808s can be controlled by adjusting ratio of the linkers. 57%TCPP@MOF-808 could provide ideal appearance with excellent stability. By using 57%TCPP@MOF-808 as sorbent, a dispersive solid-phase extraction (dSPE) was developed for extraction of endocrine disrupting compounds (EDCs) including BPA, 17ß-E2, 17α-E2, E1, and HEX from environmental water prior to HPLC analysis. The pseudo-second-order model can describe the adsorption kinetic data well. Using Langmuir isotherm model, the maximum adsorption capacities of BPA, 17ß-E2, 17α-E2, and E1 were calculated as 94.34, 104.17, 109.89, and 121.95 mg·g-1, respectively. The LODs for the analysis of EDCs with HPLC-DAD by using 57%TCPP@MOF-808 as sorbent were achieved in the range of 0.01-0.03 ng·mL-1. The recoveries were obtained in the range of 74.63-98.00%. Enrichment factors were calculated in the range of 146-312. This work provides an effective strategy for design and preparation of multifunctional nanomaterials to improve their potential applications in the detection of environmental pollutants.


Endocrine Disruptors , Metal-Organic Frameworks , Adsorption , Solid Phase Extraction , Zirconium
14.
Chemosphere ; 290: 133339, 2022 Mar.
Article En | MEDLINE | ID: mdl-34929284

Environment-ubiquitous low-molecular-weight organic acids (LMWOAs) can interact with heavy metal ions and thus affect their mobility in subsurface aquifers. Herein, the effects of LMWOAs (including acetic acid, tartaric acid, malonic acid, oxalic acid, and citric acid) on the mobility of heavy metal ions (including Cd2+, Zn2+, Ni2+, Mn2+, and Co2+) in porous media were investigated to reveal the role of the stability constants of metal-LMWOA complexes in the mobility of heavy metal ions in porous media. The results showed that the mobility of different metal ions followed the order of Cd2+ < Zn2+ < Ni2+ < Mn2+ < Co2+ despite of LMWOAs-free or LMWOAs-addition. For each heavy metal, all the organic acids enhanced its transport by forming stable non-adsorbing metal-LMWOA complexes and the enhanced ability followed the order of citric acid > oxalic acid > malonic acid > tartaric acid > acetic acid. An interesting finding was that there was a significantly positive correlation between the enhanced abilities of LMWOAs to metal mobility and the complex stability constants (log K) (R2 = 0.801-0.961, p < 0.05), indicating that the complex stability of metal-LMWOA was the dominant factor responsible for the enhanced transport of heavy metal ions. Meanwhile, the linear slope indicated the intensity of enhancement of LMWOAs on heavy metal mobility was heavy metal type-dependent. This study proposed that the complex stability of metal-LMWOA could be an indicator to quantify and predict the impact of LMWOAs on the mobility of heavy metals.


Metals, Heavy , Soil Pollutants , Ions , Metals, Heavy/analysis , Molecular Weight , Porosity , Soil , Soil Pollutants/analysis
15.
J Chromatogr A ; 1659: 462655, 2021 Dec 06.
Article En | MEDLINE | ID: mdl-34749185

A two-dimensional nitrogen-rich carbon nitrogen (C3N5) material was prepared via a facile high temperature thermal polymerization. For the first time, the C3N5 was used as fiber coating of solid-phase microextraction (SPME) to extract and preconcentrate polychlorinated biphenyls (PCBs) before gas chromatography (GC) analysis. The X-ray diffraction, N2 adsorption-desorption, Fourier transform-infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy were performed to investigate structure, functional groups, thermal stability, bonding type, element composition, and atomic ratio of C3N5. The two-dimensional planar stacking structure was further verified by scanning electron microscopy and transmission electron microscopy. Five PCBs including PCB-4, PCB-12, PCB-29, PCB-52 and PCB-101 were selected as targets to evaluate performance of SPME fiber. Under the optimal conditions, the method showed a good linear range from 0.01 to 1000 ng/mL with the correlation coefficients (R2) higher than 0.9990. Enrichment factors of the method were obtained from 2045 to 3080. The limits of detection (LODs, S/N = 3) and limits of quantification (LOQs, S/N = 10) were calculated as 0.0031-0.0111 ng/mL and 0.01-0.05 ng/mL, respectively. The precisions of intra-day and inter-day were obtained with the relative standard deviations (RSDs) at 1.5-6.6% and 0.8-6.9%, respectively. The fiber-to-fiber producibility was achieved with RSDs ranged from 3.5% to 11.4%. The method was applied to detect PCBs in river water and soil samples. The contents were calculated at 0.040-0.147 ng/mL in water and 0.520-3.218 ng/g in soil. The C3N5 as SPME fiber coating material may be applied to extract and preconcentrate other environmental pollutants which have similar chemical structures with PCBs.


Polychlorinated Biphenyls , Solid Phase Microextraction , Nitriles , Nitrogen
16.
Talanta ; 235: 122818, 2021 Dec 01.
Article En | MEDLINE | ID: mdl-34517674

As a type of environmental endocrine disrupting chemicals, bisphenols (BPs) have a certain embryonic toxicity and teratogenicity, which can significantly increase the risks of breast cancer, prostate cancer, leukemia and other cancers. In this work, stable multivariate metal-organic frameworks (UiO-66-NH2/TCPPx) were synthesized via in situ one-pot method and used as miniaturized dispersive solid-phase extraction (dµSPE) sorbents for extraction of trace BPs from environmental samples. The phase purity, crystal morphology and physical properties of UiO-66-NH2/TCPPx samples were varied by adjusting the mass ratio of TCPP. The extraction performance of UiO-66-NH2/TCPPx samples were investigated and UiO-66-NH2/TCPP1.0 exhibited the highest adsorption efficiency. Besides, UiO-66-NH2/TCPP1.0 possessed excellent recycling stability for the adsorption and desorption of BPs more than 20 cycles. The experimental parameters including amount of adsorbent, adsorption time, sample solution pH, temperature, desorption time and desorption solvents which affecting the efficiency of dµSPE were studied, respectively. Good linearity (R2 > 0.9992) in range of 0.1-200 ng mL-1 was obtained. The detection limits (S/N = 3) and quantification limits (S/N = 10) were achieved at 0.03-0.08 ng mL-1 and 0.1-0.5 ng mL-1, respectively. The relative standard deviations (RSDs) of intra-day and inter-day ranged from 2.5 to 5.5% and 1.1-6.8%. Enrichment factors were calculated in the range of 303-338. The obtained recoveries of bisphenol F (BPF), bisphenol A (BPA), bisphenol B (BPB) and bisphenol AF (BPAF) were 81.26-91.03% (RSDs = 0.96-6.47%), 82.2-97.27% (RSDs = 0.45-6.15%), 87.56-97.26% (RSDs = 1.1-6.22%) and 82.2-100.8% (RSDs = 0.46-4.07%). The UiO-66-NH2/TCPP1.0 can be employed as potential dµSPE sorbents for the enrichment of trace BPs in the environmental samples.


Metal-Organic Frameworks , Adsorption , Benzhydryl Compounds , Humans , Male , Phenols , Solid Phase Extraction , Solvents
17.
Mikrochim Acta ; 188(10): 340, 2021 Sep 14.
Article En | MEDLINE | ID: mdl-34523015

Using MIL-101(Fe) as the source of carbon and Fe, a magnetic porous carbon (MPC) material with Fe3C nanoparticles encapsulated in porous carbon was prepared through one-pot pyrolysis under N2 atmosphere. With MPC as adsorption material, a stir bar sorptive-dispersive microextraction (SBSDME) method was proposed to extract and preconcentrate sulfonamides (SAs) prior to HPLC-DAD determination. To investigate their extraction ability, different MPC materials were prepared under different carbonization temperatures (600, 700, 800, 900, and 1000 °C). The material prepared under 900 °C (MPC-900) exhibited the highest extraction ability for SAs. The as-prepared MPC materials were also characterized by Raman spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, zeta potential, and other techniques. The main parameters that affect extraction were systematically studied. Under optimal conditions, favorable linearity (R2 ≥ 0.9938) and detection limits (0.02-0.04 ng mL-1) of sulfonamides were obtained. The average recoveries for spiked milk and lake water samples ranged from 76.9 to 109% and from 75.4 to 118% with RSDs of 3.10-9.63% and 1.71-11.3%, respectively. Sulfameter and sulfisoxazole were detected in milk sample. Sulfisoxazole was detected in the lake water sample. The MPC-900 material demonstrated excellent reusability. It can be reused 24 times with peak areas having no obvious decline. The method can be applied to extract ultra-trace compounds in complex sample matrices. Schematic presentation of a stir bar sorptive-dispersive microextraction (SBSDME) by using magnetic porous carbon (MPC) composites as sorbent combined with high-performance liquid chromatography for sensitive analysis of sulfonamides in milk and lake water samples.

18.
Chem Commun (Camb) ; 57(70): 8810-8813, 2021 Sep 11.
Article En | MEDLINE | ID: mdl-34382969

Herein, a new gas-cycle-assisted (GCA) headspace solid-phase microextraction (HS-SPME) device was designed to rapidly extract organic pollutants with high Kow and boiling points, which have difficulty in volatilization from matrix to headspace. Organic pollutants, including three polycyclic aromatic hydrocarbons (PAHs), four polychlorinated biphenyls (PCBs), and five phthalate esters (PAEs), were selected to evaluate the performance of GCA HS-SPME. Compared with conventional HS-SPME, the equilibrium times of GCA HS-SPME for extraction of PAHs, PCBs, and PAEs were greatly shortened from 70-90 to 5-11 min. Moreover, the limits of detection for analysis of PAHs were achieved at pg mL-1 level by GCA HS-SPME coupled with gas chromatography-flame ionization detection.

19.
J Chromatogr A ; 1649: 462236, 2021 Jul 19.
Article En | MEDLINE | ID: mdl-34038777

The widespread presence of lipid hydroperoxides in foodstuffs and biological samples has aroused great attentions in recent years, while it remains challenging for analysis of the fragility of O - O bond linkage of peroxides. In this present study, we explored the utility of electrospray ionization mass spectrometry (ESI-MS) for characterization of two fatty acid hydroperoxides from oxidation of linoleic acid and α-linolenic acid, which are the essential fatty acids abundant in many seeds and vegetable oils. The results indicated that in-source fragmentation occurred in the detection of the two fatty acid hydroperoxides in both positive and negative ion modes, which yielded characteristic fragments for ESI-MS analysis. In addition, the genotoxicity of fatty acid hydroperoxides for generation of nucleoside adducts was investigated. It was found that a variety of nucleoside adducts were formed from the reactions of fatty acid hydroperoxides and nucleosides. Furthermore, the decomposition products of the fatty acid hydroperoxides were determined, which provided evidence to elucidate the reaction mechanism for formation of nucleoside adducts.


Fatty Acids/chemistry , Linoleic Acids/chemistry , Linolenic Acids/chemistry , Lipid Peroxides/chemistry , Nucleosides/chemistry , Chromatography, High Pressure Liquid/methods , Oxidation-Reduction , Plant Oils/chemistry , Spectrometry, Mass, Electrospray Ionization/methods
20.
J Environ Sci (China) ; 103: 80-92, 2021 May.
Article En | MEDLINE | ID: mdl-33743921

In this study, transport behaviors of graphene oxide (GO) in saturated uncoated (i.e., clean sand) and goethite-coated sand porous media were examined as a function of the phosphate. We found that phosphate enhanced the transport of GO over a wide range of solution chemistry (i.e., pH 5.0-9.0 and the presence of 10 mmol/L Na+ or 0.5 mmol/L Ca2+). The results were mainly ascribed to the increase of electrostatic repulsion between nanoparticles and porous media. Meanwhile, deposition site competition induced by the retained phosphate was another important mechanism leading to promote GO transport. Interestingly, when the phosphate concentration increased from 0.1 to 1.0 mmol/L, the transport-enhancement effect of phosphate in goethite-coated sand was to a much larger extent than that in clean sand. The observations were primarily related to the difference in the total mass of retained phosphate between the iron oxide-coated sand and clean sand columns, which resulted in different degrees of the electrostatic repulsion and competitive effect of phosphate. When the background solution contained 0.5 mmol/L Ca2+, phosphate could be bind to sand/ goethite-coated sand surface by cation bridging; and consequently, promoted competition between phosphate and nanoparticles for deposition sites, which was an important mechanism for the enhanced effect of phosphate. Moreover, the DLVO theory was applicable to describe GO transport behaviors in porous media in the absence or presence of phosphate. Taken together, these findings highlight the important status and role of phosphate on the transport and fate of colloidal graphene oxide in the subsurface environment.


Nanoparticles , Silicon Dioxide , Ferric Compounds , Graphite , Phosphates , Porosity , Sand
...