Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Mediators Inflamm ; 2024: 8237681, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974599

RESUMEN

Electroacupuncture (EA) at the Neiguan acupoint (PC6) has shown significant cardioprotective effects. Sympathetic nerves play an important role in maintaining cardiac function after myocardial infarction (MI). Previous studies have found that EA treatment may improve cardiac function by modulating sympathetic remodeling after MI. However, the mechanism in how EA affects sympathetic remodeling and improves cardiac function remains unclear. The aim of this study is to investigate the cardioprotective mechanism of EA after myocardial ischemic injury by improving sympathetic remodeling and promoting macrophage M2 polarization. We established a mouse model of MI by occluding coronary arteries in male C57/BL6 mice. EA treatment was performed at the PC6 with current intensity (1 mA) and frequency (2/15 Hz). Cardiac function was evaluated using echocardiography. Heart rate variability in mice was assessed via standard electrocardiography. Myocardial fibrosis was evaluated by Sirius red staining. Levels of inflammatory factors were assessed using RT-qPCR. Sympathetic nerve remodeling was assessed through ELISA, western blotting, immunohistochemistry, and immunofluorescence staining. Macrophage polarization was evaluated using flow cytometry. Our results indicated that cardiac systolic function improved significantly after EA treatment, with an increase in fractional shortening and ejection fraction. Myocardial fibrosis was significantly mitigated in the EA group. The sympathetic nerve marker tyrosine hydroxylase and the nerve sprouting marker growth-associated Protein 43 were significantly reduced in the EA group, indicating that sympathetic remodeling was significantly reduced. EA treatment also promoted macrophage M2 polarization, reduced levels of inflammatory factors TNF-α, IL-1ß, and IL-6, and decreased macrophage-associated nerve growth factor in myocardial tissue. To sum up, our results suggest that EA at PC6 attenuates sympathetic remodeling after MI to promote macrophage M2 polarization and improve cardiac function.


Asunto(s)
Electroacupuntura , Macrófagos , Ratones Endogámicos C57BL , Infarto del Miocardio , Animales , Masculino , Infarto del Miocardio/terapia , Ratones , Macrófagos/metabolismo , Sistema Nervioso Simpático , Ecocardiografía , Corazón/fisiopatología , Miocardio/metabolismo , Miocardio/patología
2.
Zhen Ci Yan Jiu ; 49(5): 441-447, 2024 May 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38764114

RESUMEN

OBJECTIVES: To observe the effect of electroacupuncture (EA) at "Neiguan" (PC6) on pain response in mice injected with complete Freund's adjuvant (CFA) in the hind paw, so as to investigate the mechanism of orexin 1 receptor (OX1R) -endogenous cannabinoid 1 receptor (CB1R) pathway in acupuncture analgesia. METHODS: A total of 48 male C57BL/6 mice were used in the present study. In the first part of this study, 18 mice were randomized into control, model and EA groups, with 6 mice in each group. In the second part of this study, 30 mice were randomized into control, model, EA, EA+Naloxone, EA+OX1R antagonist (SB33486) groups, with 6 mice in each group. Inflammatory pain model was established by subcutaneous injection of 20 µL CFA solution in the left hind paw. EA (2 Hz, 2 mA ) was applied to bilateral PC6 for 20 min, once a day for 5 consecutive days. The mice in the EA+Naloxone and EA+SB33486 groups were intraperitoneally injected with naloxone (10 mg/kg) or SB33486 (15 mg/kg) 15 min before EA intervention on day 5, respectively. Tail-flick method and Von Frey method were used to detect the thermal pain threshold and mechanical pain threshold of mice. Quantitative real-time PCR was used to detect the expression level of ß-endorphin mRNA in periaqueductal gray (PAG) of mice. The expression of OX1R positive cells in the lateral hypothalamic area (LH) and CB1R positive cells in the ventrolateral periaqueductal gray (vlPAG) were detected by immunofluorescence. RESULTS: Compared with the control group, the thermal pain threshold and mechanical pain threshold of the model group were decreased (P<0.001), the expression level of ß-endorphin mRNA in PAG was decreased (P<0.001), and the numbers of OX1R positive cells in LH and CB1R positive cells in vlPAG were decreased (P<0.05, P<0.001). Compared with the model group, the thermal pain threshold and mechanical pain threshold of the EA group were significantly increased (P<0.001), and the numbers of OX1R positive cells in LH and CB1R positive cells in vlPAG were increased (P<0.01, P<0.001). Compared with the EA group, the mechanical pain threshold in the EA+SB33486 group was significantly decreased (P<0.01), but there was no significant difference in the mechanical pain threshold between the EA+Naloxone group and EA group, and the numbers of OX1R positive neurons in LH and CB1R positive neurons in vlPAG were decreased in the EA+SB33486 group (P<0.001). CONCLUSIONS: EA at PC6 can achieve analgesic effect on CFA mice by activating the OX1R-CB1R pathway in the brain, and this effect is opioid-independent.


Asunto(s)
Puntos de Acupuntura , Encéfalo , Electroacupuntura , Receptores de Orexina , Dolor , Animales , Humanos , Masculino , Ratones , Encéfalo/metabolismo , Inflamación/terapia , Inflamación/metabolismo , Inflamación/genética , Ratones Endogámicos C57BL , Receptores de Orexina/metabolismo , Receptores de Orexina/genética , Dolor/metabolismo , Dolor/genética , Manejo del Dolor
3.
Heliyon ; 10(6): e27045, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38500994

RESUMEN

Background: Imbalances between Bcl-2 and caspase-3 are significant evidence of apoptosis, which is considered an influential factor in rapidly occurring neuronal cell death and the decline of neurological function after stroke. Studies have shown that acupuncture can reduce poststroke brain cell damage via either an increase in Bcl-2 or a reduction in caspase-3 exposure. The current study aimed to investigate whether acupuncture could modulate Bcl-2 and caspase-3 expression through histone acetylation modifications, which could potentially serve as a neuroprotective mechanism. Methods: This study used TTC staining, Nissl staining, Clark neurological system score, and Evans Blue (EB) extravasation to evaluate neurological damage following stroke. The expression of Bcl-2/caspase-3 mRNA was detected by real-time fluorescence quantification of PCR (real-time PCR), whereas the protein expression levels of Bcl-2, Bax, caspase-3, and cleaved caspase-3 were assessed using western blotting. TUNEL staining of the ischemic cortical neurons determined apoptosis in the ischemic cortex. Histone acetyltransferase (HAT) and histone deacetylase (HDAC) activities, along with the protein performance of AceH3, H3K9ace, and H3K27ace, were detected to evaluate the degree of histone acetylation. The acetylation enrichment levels of H3K9 and K3K27 in the Bcl-2/caspase-3 gene were assessed using Chromatin Immunoprecipitation (ChIP) assay. Results: Our data demonstrated that electroacupuncture (EA) exerts a significant neuroprotective effect in middle cerebral artery occlusion (MCAO) rats, as evidenced by a reduction in infarct volume, neuronal damage, Blood-Brain Barrier (BBB) disruption, and decreased apoptosis of ischemic cortical neurons. EA treatment can promote the mRNA and protein expression of the Bcl-2 gene in the ischemic brain while reducing the mRNA and protein expression levels of caspase-3 and effectively decreasing the protein expression levels of Bax and cleaved caspase-3. More importantly, EA treatment enhanced the level of histone acetylation, including Ace-H3, H3K9ace, and H3K27ace, significantly enhanced the occupancy of H3K9ace/H3K27ace at the Bcl-2 promoter, and reduced the enrichment of H3K9ace and H3K27ace at the caspase-3 promoter. However, the Histone Acetyltransferase inhibitor (HATi) treatment reversed these effects. Conclusions: Our data demonstrated that EA mediated the expression levels of Bcl-2 and caspase-3 in MCAO rats by regulating the occupancy of acetylated H3K9/H3K27 at the promoters of these two genes, thus exerting a cerebral protective effect in ischemic reperfusion (I/R) injury.

5.
Zhen Ci Yan Jiu ; 49(1): 30-36, 2024 Jan 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38239136

RESUMEN

OBJECTIVES: To observe the effects of electroacupuncture(EA) on local inflammatory mediators and macrophage polarization, and immune cells in the spleen of mice with chronic inflammatory pain induced by complete Freund's adjuvant (CFA) in the hind paw, so as to investigate the immunoinflammatory regulatory mechanisms of EA in relieving pain and swelling in mice with chronic inflammatory pain. METHODS: Thirty C57BL/6 mice were randomly divided into control, model, and EA groups, with 10 mice in each group. Chronic inflammatory pain model were established by subcutaneous injection of 20 µL CFA solution in the left hind paw for 7 consecutive days. After modeling, mice in the EA group received EA at bilateral "Zusanli"(ST36) for 20 min (2 Hz/100 Hz, 1 mA) once a day for 18 consecutive days. Mechanical pain threshold, heat pain thresholds, and paw thickness were measured before and after mode-ling, and after interventions. Western blot was used to detect the expression of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, and NOD-like receptor protein 3 (NLRP3) in the paw tissue. Immunohistochemistry was used to detect the positive expression of M1-type macrophage marker inducible nitric oride synthase (iNOS) and M2-type marker CD206 in the paw, and flow cytometry was used to detect the proportion of F4/80+ CD11b+ macrophages, Ly6G+ CD11b+ neutrophils, and CD25+ Foxp3+ regulatory T cells (Treg) in the spleen. RESULTS: Compared with the control group, mechanical pain and heat pain thresholds were significantly reduced(P<0.000 1), while paw thickness, expressions of IL-1ß, TNF-α, and NLRP3 in the paw, and positive expression of M1 macrophage marker iNOS in the paw, the proportions of macrophages and neutrophils in the spleen were significantly increased (P<0.000 1, P<0.001) in the model group. Compared with the model group, mechanical pain threshold and heat pain thresholds, CD206 positive expression in the paw, and Treg cell proportion in spleen were significantly increased (P<0.01), while paw thickness, the expressions of IL-1ß, TNF-α and NLRP3 in the paw, as well as the positive expression of M1 macrophage marker iNOS in the paw, the proportions of macrophages and neutrophils in the spleen were significantly reduced (P<0.001, P<0.01, P<0.05)in mice of the EA group after intervention. CONCLUSIONS: EA may alleviate pain and swelling in mice with chronic inflammatory pain by regulating the numbers of macrophages, neutrophils, and Treg cells, as well as promoting M2 polarization of local macrophages and inhibiting the release of pro-inflammatory cytokines.


Asunto(s)
Dolor Crónico , Electroacupuntura , Ratones , Animales , Factor de Necrosis Tumoral alfa/genética , Proteína con Dominio Pirina 3 de la Familia NLR , Ratones Endogámicos C57BL , Dolor Crónico/genética , Dolor Crónico/terapia , Interleucina-1beta , Adyuvante de Freund
6.
Gene ; 897: 148090, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38110043

RESUMEN

Carfilzomib (CFZ), a proteasome inhibitor commonly used in the treatment of multiple myeloma (MM), exhibits limited clinical application due to its cardiotoxicity. In our study, electroacupuncture (EA) at Neiguan acupoint (PC6) effectively reversed CFZ-induced reduction in ejection fraction (EF) and fractional shortening (FS), demonstrating great potential effect for heart protection. Through comparative analysis of the transcriptome profile from heart samples of mice treated with DMSO control, CFZ injection, and EA stimulation, we identified a total of 770 differentially expressed genes (DEGs) in CFZ (vs. Control) group and 329 DEGs in EA (vs. CFZ) group. Specifically, CFZ (vs. Control) group exhibited 65 up-regulated DEGs and 705 down-regulated DEGs, while EA (vs. CFZ) group displayed 251 up-regulated DEGs and 78 down-regulated DEGs. Metascape analysis revealed that among these treatment groups, there were 137 co-expressed DEGs remarkably enriched in skeletal system development, cellular response to growth factor stimulus, negative regulation of Wnt signaling pathway, and muscle contraction. The expression patterns of miR-8114, Myl4, Col1a1, Tmem163, Myl7, Sln, and Fxyd3, which belong to the top 30 DEGs, were verified by quantitative real-time PCR (RT-qPCR). In summary, this study firstly discloses novel insights into the regulatory mechanisms underlying PC6-based EA therapy against CFZ-induced cardiotoxicity, potentially serving as a theoretical foundation for further clinical applications.


Asunto(s)
Cardiotoxicidad , Electroacupuntura , Oligopéptidos , Extractos Vegetales , Ratones , Animales , Cardiotoxicidad/terapia , Cardiotoxicidad/prevención & control , Corazón
7.
Front Biosci (Landmark Ed) ; 28(11): 291, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-38062810

RESUMEN

BACKGROUND: Accumulating evidence suggests that acupuncture may serve as a potent strategy to mitigate the deleterious effects of ischemic stroke on neural tissue. The present investigation delineated the neuroprotective potential of electroacupuncture (EA) administered pre-and post-stroke, with a focus on determining the commonalities and disparities between these two therapeutic approaches in ameliorating ischemic stroke-induced brain injury. The ultimate objective is to inform optimal timing for acupuncture intervention in the clinical management and prevention of stroke. METHODS: The extent of cerebral infarction was quantified with 2,3,5-triphenyltetrazolium chloride staining. The integrity of the blood-brain barrier was assessed by evaluating the extravasation of Evans blue (EB) dye, while neurological function was appraised using the Longa neurological scoring system. RNA sequencing was employed to examine the transcriptomic landscape of ischemic brain tissue, with subsequent bioinformatics annotation of the sequencing data facilitated by Metascape. RESULTS: (1) A notable decrease in the ischemic infarct volume was observed in both the EA-preconditioned plus middle cerebral artery occlusion (MCAO), EA-preconditioned plus middle cerebral artery occlusion (EAM) and MCAO plus EA-treated (MEA) groups, compared to the MCAO group. Furthermore, the decreased leakage of EB and reduction in neurological function impairment scores were evident in the EAM and MEA groups compared with the MCAO group. (2) Relative to the Sham group, the MCAO group exhibited a total of 4798 differentially expressed genes (DEGs), with 67.84% demonstrating an expression fold change (FC) greater than 1.5, and 34.16% exceeding a FC of 2. The EAM and MEA groups displayed 4020 and 1956 DEGs, respectively, compared to the MCAO group. In both groups, more than 55% of DEGs showed an expression FC surpassing 1.5, whereas only approximately 10% exhibited a change greater than 2-fold. Remarkably, EA preconditioning and EA treatment resulted in the reversal of 18.72% and 28.91% of DEGs, respectively, in the MCAO group. (3) The DEGs upregulated in response to ischemic stroke were predominantly implicated in immune inflammatory processes and cellular apoptosis, whereas the downregulated DEGs were associated with neurogenesis and neuronal signal transduction. The MEA-induced upregulated DEGs were primarily involved in neural transmission and metabolic processes, whereas the downregulated DEGs were linked to excessive inflammatory responses to physical and chemical stimuli, as well as cell matrix adhesion chemotaxis. In the context of EAM, the upregulated DEGs were chiefly related to protein biosynthesis, and energy and metabolic processes, whereas the downregulated genes were connected to gene transcriptional activity, synaptic function, and neuronal architecture. CONCLUSIONS: Both preconditioning and post-event treatment with acupuncture demonstrated efficacy in mitigating pathological damage to brain tissue in a rat model of ischemic stroke, albeit with some divergences in their gene targets. The integration of EA preconditioning and treatment may potentially confer enhanced neuroprotection in the clinical management of stroke patients.


Asunto(s)
Isquemia Encefálica , Electroacupuntura , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Ratas , Animales , Electroacupuntura/métodos , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/terapia , Accidente Cerebrovascular Isquémico/metabolismo , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/terapia , Infarto de la Arteria Cerebral Media/metabolismo , Transcriptoma , Ratas Sprague-Dawley , Encéfalo/metabolismo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo
8.
Heliyon ; 9(9): e19396, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809701

RESUMEN

Background: The protective effects of electroacupuncture (EA) preconditioning against myocardial ischemia-reperfusion injury (MIRI) have been reported. However, the underlying mechanism remains unclear. Recent research has indicated that the dynamic inflammatory response following MIRI plays an essential role in the progression of myocardial injury. This study aimed to investigate the myocardial protective effects of EA preconditioning on MIRI in rats and to explore the relevant mechanism from the perspective of dynamic inflammatory response. Methods: A MIRI model was employed, and the rats were subjected to EA on Neiguan for four days prior to modeling. The myocardial protective effect of EA preconditioning was evaluated by echocardiography, Evans blue and triphenyltetrazolium chloride staining. Real-time polymerase chain reaction, Western blot, hematoxylin & eosin staining, and immunohistochemistry were utilized to detect the content of mitochondrial DNA, NOD receptor family protein 3 (NLRP3) inflammasome activation, neutrophil recruitment and macrophage infiltration in blood samples and myocardium below the ligation. Results: We found that EA preconditioning could accelerate the recovery of left ventricle function after MIRI and reduce the myocardial infarction area, thereby protecting the myocardium against MIRI. Furthermore, EA preconditioning was observed to ameliorate mitochondrial impairment, reduce the level of plasma mitochondrial DNA, modulate NLRP3 inflammasome activation, attenuate neutrophil infiltration, and promote the polarization of M1 macrophages towards M2 macrophages in the myocardium after MIRI. Conclusion: EA preconditioning could reduce plasma mtDNA, suppress overactivation of the NLRP3 inflammasome, facilitate the transition from the acute pro-inflammatory phase to the anti-inflammatory reparative phase after MIRI, and ultimately confer cardioprotective benefits.

9.
Brain Res ; 1803: 148233, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36623758

RESUMEN

Electro-acupuncture (EA) has an anti-inflammatory role in ischemic stroke, but whether the protective effect of EA involves the regulation of the intestine barrier and Treg/ γδ T cells is unclear. Cerebral ischemia-reperfusion (I/R) injury was induced by middle cerebral artery occlusion(MCAO) for 2 h followed by reperfusion for 24 h. The rats have treated with EA at the "Baihui" acupoint(GV20). Triphenyl tetrazolium chloride (TTC) staining and Longa neurologic score were performed to evaluate the outcomes after ischemic stroke. Inflammatory factor expression levels in the serum, ischemic hemisphere brain, and small intestine were detected by ELISA or RT-qPCR. Additionally, the morphology change of the small intestine was evaluated by analyzing villus height and smooth muscle thickness. Meanwhile, the expression of tight-junction proteins, including Zonula Occludens-1 (ZO-1), Occludin, and Claudin-1, were detected to evaluate the impact of EA on mucosal permeability in the small intestine. The percentages of regulatory T cells (Tregs) (CD45+CD4+Foxp3+) and γδ T cells (CD45+CD4-γδ T+) were measured to assess the effect of EA on intestinal T cells. EA decreased the brain infarction volume and intestine barrier injury in ischemic stroke rats. At the same time, it effectively suppressed the post-stroke inflammation in the brain and small intestine. More importantly, EA treatment increased the percentage of Tregs in the small intestine while reducing the rate of γδ T cells, and ultimately increased the ratio of Treg/ γδ T cells. These results demonstrated that EA ameliorated intestinal inflammation damage by regulating the Treg/ γδ T cell polarity shift and improving the intestine barrier integrity in rats with I/R injury. This may be one of the mechanisms underlying the anti-ischemic injury effects of acupuncture on stroke.


Asunto(s)
Terapia por Acupuntura , Isquemia Encefálica , Electroacupuntura , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Accidente Cerebrovascular , Ratas , Animales , Linfocitos T Reguladores/metabolismo , Ratas Sprague-Dawley , Electroacupuntura/métodos , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Inflamación/terapia , Daño por Reperfusión/terapia , Daño por Reperfusión/metabolismo , Reperfusión
10.
Exp Neurol ; 362: 114324, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36669751

RESUMEN

BACKGROUND: Electro-acupuncture (EA) is an effective and safe treatment for ischemic stroke. It is not only capable of reducing cerebral damage but also alleviating intestinal inflammation. However, its mechanism has not been fully elucidated. METHODS: All rats were randomly divided into three experimental groups: the SHAM group, the MCAO group, and the MEA (MCAO+EA) group. Ischemic-reperfusion (I/R) injury was induced by MCAO surgery. Rats in the MEA group were treated with EA stimulation in the "Baihui" acupoint (1 mA, 2/15 Hz, 20 min for each time). The Real-time (RT)-qPCR was used to evaluate the mRNA expression of inflammation factors in the ischemic brain and the small intestine after I/R injury. In addition, our research evaluated the effects of EA on regulatory T cells (Tregs) and γδ T cells in the small intestine and brain via Flow cytometry analysis. Finally, we applied CM-Dil and CFSE injection and explored the potential connections of T cells between the ischemic hemisphere and the small intestine. RESULTS: Our results suggested that EA treatment could significantly reduce the inflammation response in the ischemic brain and small intestine 3 days after I/R injury in rats. To be specific, EA increased the percentage of Tregs in the brain and the small intestine and decreased intestinal and cerebral γδ T cells. Concomitantly, after EA treatment, the percentage of cerebral CD3+TCRγδ+CFSE+ cells dropped from 12.06% to 6.52% compared with the MCAO group. CONCLUSIONS: These findings revealed that EA could regulate the Tregs and γδ T cells in the ischemic brain and the small intestine, which indicated its effect on inhibiting inflammation. And, EA could inhibit the mobilization of intestinal T cells, which may contribute to the protection of EA after ischemic stroke.


Asunto(s)
Terapia por Acupuntura , Isquemia Encefálica , Electroacupuntura , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Ratas , Animales , Linfocitos T Reguladores/metabolismo , Ratas Sprague-Dawley , Electroacupuntura/métodos , Isquemia Encefálica/metabolismo , Inflamación/terapia , Daño por Reperfusión/metabolismo
11.
Purinergic Signal ; 19(1): 229-243, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35254594

RESUMEN

Purines and their derivatives, extensively distributed in the body, act as a class of extracellular signaling molecules via a rich array of receptors, also known as purinoceptors (P1, P2X, and P2Y). They mediate multiple intracellular signal transduction pathways and participate in various physiological and pathological cell behaviors. Since the function in myocardial ischemia-reperfusion injury (MIRI), this review summarized the involvement of purinergic signal transduction in diversified pathological processes, including energy metabolism disorder, oxidative stress injury, calcium overload, inflammatory immune response, platelet aggregation, coronary vascular dysfunction, and cell necrosis and apoptosis. Moreover, increasing evidence suggests that purinergic signaling also mediates the prevention and treatment of MIRI, such as ischemic conditioning, pharmacological intervention, and some other therapies. In conclusion, this review exhibited that purinergic signaling mediates the complex processes of MIRI which shows its promising application and prospecting in the future.


Asunto(s)
Daño por Reperfusión Miocárdica , Humanos , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Corazón , Transducción de Señal/fisiología , Vasos Coronarios , Estrés Oxidativo
12.
Phytomedicine ; 108: 154467, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36252464

RESUMEN

BACKGROUND: Although opioid agonist-based treatments are considered the first-line treatment for opioid use disorders, nonopioid alternatives are urgently needed to combat the inevitable high relapse rates. Compound 511 is a formula derived from ancient traditional Chinese medical literature on opiate rehabilitation. Previously, we observed that Compound 511 could effectively prevent the acquisition of conditioned place preference (CPP) during early morphine exposure. However, its effects on drug-induced reinstatement remain unclear. PURPOSE: This study aims to estimate the potential of Compound 511 for the therapeutic intervention of opioid relapse in rodent models and explore the potential mechanisms underlying the observed actions. STUDY DESIGN/METHODS: The CPP and locomotor sensitization paradigm were established to evaluate the therapeutic effect of Compound 511 treatment on morphine-induced neuroadaptations, followed by immunofluorescence and western blot (WB) analysis of the synaptic markers PSD-95 and Syn-1. Furthermore, several addiction-associated transcription factors and epigenetic marks were examined by qPCR and WB, respectively. Furthermore, the key active ingredients and targets of Compound 511 were further excavated by network pharmacology approach and experimental validation. RESULTS: The results proved that Compound 511 treatment during abstinence blunted both the reinstatement of morphine-evoked CPP and locomotor sensitization, accompanied by the normalization of morphine-induced postsynaptic plasticity in the nucleus accumbens (NAc). Additionally, Compound 511 was shown to exert a selectively repressive influence on morphine-induced hyperacetylation at H3K14 and a reduction in H3K9 dimethylation as well as ΔFosB activation and accumulation in the NAc. Finally, two herbal ingredients of Compound 511 and six putative targets involved in the regulation of histone modification were identified. CONCLUSION: Our findings indicated that Compound 511 could block CPP reinstatement and locomotor sensitization predominantly via the reversal of morphine-induced postsynaptic plasticity through epigenetic mechanisms. Additionally, 1-methoxy-2,3-methylenedioxyxanthone and 1,7-dimethoxyxanthone may serve as key ingredients of Compound 511 by targeting specific epigenetic enzymes. This study provided an efficient nonopioid treatment against opioid addiction.


Asunto(s)
Morfina , Trastornos Relacionados con Opioides , Humanos , Morfina/farmacología , Morfina/metabolismo , Núcleo Accumbens/metabolismo , Analgésicos Opioides , Trastornos Relacionados con Opioides/tratamiento farmacológico , Plasticidad Neuronal , Recurrencia
13.
Phytomedicine ; 108: 154475, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36252465

RESUMEN

BACKGROUND: Opioids are widely used in clinical practice. However, their long-term administration causes respiratory depression, addiction, tolerance, and severe immunosuppression. Traditional Chinese medicine (TCM) can alleviate opioid-induced adverse effects. Compound 511 is particularly developed for treating opioid addiction, based on Jiumi Liangfang, an ancient Chinese drug treatment and rehabilitation monograph completed in 1833 A.D. It is an herbal formula containing eight plants, each of them contributing to the overall pharmacological effect of the product: Panax ginseng C. A. Meyer (8.8%), Astragalus membranaceus (Fisch.) (18.2%), Datura metel Linn. (10.95%), Corydalis yanhusuo W. T. Wang (14.6%), Acanthopanar gracilistµlus W. W. Smith (10.95%), Ophiopogon japonicus (Linn. f.) Ker-Gawl. (10.95%), Gynostemma pentaphyllum (Thunb.) Makino (10.95%), Polygala arvensis Willd. (14.6%). This formula effectively ameliorates opioid-induced immunosuppression. However, the underlying mechanism remains unclear. PURPOSE: To reveal the effects of Compound 511 on the immune response of morphine-induced immunosuppressive mice and their potential underlying molecular mechanism. This study provides information for a better clinical approach and scientific use of opioids. METHODS: Immunosuppression was induced in mice by repeated morphine administration. Th1/Th2/Th17/Treg cell levels were measured using flow cytometry. Splenic transcription factors of Th1/Th2/Th17/Treg and outputs of the regulatory PI3K/AKT/mTOR signaling pathway were determined. Subsequently, methicillin-resistant Staphylococcus aureus (MRSA) was administered intranasally to morphine-induced immunosuppressive mice pretreated with Compound 511. Their lung inflammatory status was assessed using micro-computer tomography (CT), hematoxylin and eosin (H&E) staining, and enzyme-linked immunosorbent assay (ELISA). RESULTS: Compared to morphine, Compound 511 significantly decreased the immune organ indexes of mice, corrected the Th1/Th2 and Treg/Th17 imbalance in the immune organs and peripheral blood, reduced the mRNA levels of FOXP3 and GATA3, and increased those of STAT3 and T-bet in the spleen. It improved immune function and reduced MRSA-induced lung inflammation. CONCLUSION: Compound 511 ameliorates opioid-induced immunosuppression by regulating the balance of Th1/Th2 and Th17/Treg via PI3K/AKT/mTOR signaling pathway. Thus, it effectively reduces susceptibility of morphine-induced immunosuppressive mice to MRSA infection.


Asunto(s)
Medicamentos Herbarios Chinos , Enfermedades Pulmonares , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Ratones , Analgésicos Opioides/farmacología , Terapia de Inmunosupresión , Morfina/farmacología , Morfina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Linfocitos T Reguladores , Células Th17 , Serina-Treonina Quinasas TOR/metabolismo , Enfermedades Pulmonares/tratamiento farmacológico , Enfermedades Pulmonares/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico
14.
Zhen Ci Yan Jiu ; 47(11): 955-61, 2022 Nov 25.
Artículo en Chino | MEDLINE | ID: mdl-36453671

RESUMEN

OBJECTIVE: To observe the effect of different intensities of electroacupuncture (EA) preconditioning on car-diac function and polarization state of macrophages in mice with acute myocardial ischemia (AMI), so as to explore its possible mechanism underlying improvement of AMI. METHODS: A total of 50 male C57BL/6J mice were randomly divided into sham ope-ration, AMI model, and EA pretreatment groups (0.5 mA, 1 mA, 3 mA subgroups), with 10 mice in each group/subgroup. The mice in the EA pretreatment groups were subjected to EA stimulation of bilateral "Neiguan"(PC6) with 0.5, 1.0 and 3 mA respectively and frequency of 2 Hz/15 Hz for 20 min, once a day, for 3 days. The acute myocardial ischemia model was established by ligating the anterior descending branch (ADB) of the left coronary artery, while the sham operation only had a surgical suture trans-passed below the ADB but without ligation. The myocardial infarction area was measured after TTC staining, and the cardiac function ï¼»left ventricular ejection fraction (EF), short-axis contraction rate (FS)ï¼½ was detected by using echocardiography. The M1 macrophages were labeled with CD11b+F480+CD206low, M2 macrophages were labeled with CD11b+F480+CD206high and detected by using flow cytometry, and the expression levels of myocardial interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), Toll-like receptor-4 (TLR4) proteins were detected by using Western blot. RESULTS: Compared with the sham operation group, the model group had a significant increase in the infarction area (P<0.000 1), number of cardiac macrophages and percentage of M1 type macrophages (P<0.000 1), and the expression levels of myocardial IL-1ß, TNF-α, TLR4 proteins (P<0.001, P<0.01), and a remarkable decrease in the levels of EF, FS and the percentage of M2 type macrophages (P<0.000 1). In contrast to those of the model group, the area of myocardial infarction (P<0.000 1, P<0.01), expression levels of myocardial IL-1ß, TNF-α, TLR4 proteins (P<0.01, P<0.05, P<0.001) in the 0.5 mA, 1 mA and 3 mA groups, number of macrophages and percentage of M1 macrophages (P<0.05) in the 1 mA group were significantly decreased, while the levels of EF and FS (P<0.000 1, P<0.05, P<0.001) in the 3 EA groups, and percentage of M2 macrophage (P<0.05) in the 1 mA group were significantly increased. Comparison among the 3 EA groups displayed that the effects of 1 mA group were significantly superior to those of 0.5 and 3 mA groups in up-regulating EF and FS (P<0.01, P<0.001), and in down-regulating the area of infarct myocardium (P<0.01, P<0.000 1), and the expression of TLR4 protein (P<0.01), and 0.5 mA group in the expression of IL-1ß and TNF-α proteins (P<0.05). CONCLUSION: EA preconditioning with electrical current intensities of 0.5 mA, 1 mA and 3 mA can effectively reduce myocardial infarction size, improve cardiac function in mice with AMI, which may be related with its effects in reducing the number of cardiac macrophages and down-regulating the expression of myocardial IL-1ß, TNF-α and TLR4 proteins. The therapeutic effect of 1 mA is better than that of 0.5 and 3 mA.


Asunto(s)
Electroacupuntura , Infarto del Miocardio , Isquemia Miocárdica , Masculino , Ratones , Animales , Ratones Endogámicos C57BL , Volumen Sistólico , Factor de Necrosis Tumoral alfa/genética , Receptor Toll-Like 4 , Función Ventricular Izquierda , Isquemia Miocárdica/genética , Isquemia Miocárdica/terapia , Macrófagos
15.
Zhen Ci Yan Jiu ; 47(5): 443-8, 2022 May 25.
Artículo en Chino | MEDLINE | ID: mdl-35616419

RESUMEN

OBJECTIVE: To observe the effect of electroacupuncture(EA) preconditioning on expression of Caspase-1, Gasdermin D(GSDMD) and interleukin-1ß(IL-1ß) in myocardial tissue of myocardial ischemia reperfusion injury (MIRI) rats in order to explore its underlying mechanisms in resisting MIRI. METHODS: Forty male rats were randomly divided into 4 groups: normal control (normal), sham operation (sham), MIRI model and EA groups. The MIRI model was established by ligation of the left anterior descending branch of the left coronary artery for 30 min and perfusion. EA (2 Hz/100 Hz, 1 mA) was applied to bilateral "Neiguan" (PC6) for 20 min, once a day for 3 consecutive days. The echocardiography was used to analyze the left ventricular end-diastolic dimension (LVEDD), left ventricular end-systolic dimension (LVESD) and left ventricular ejection fraction (LVEF, by using Teichholz formula) 4 h after modeling. The myocardial TTC staining was used to observe the proportion of the infarct area, and Western blot was used to detect the expression levels of GSDMD, Caspase-1, IL-1ß proteins in the myocardium. RESULTS: Compared with the normal group, the immunoactivity of GSDMD was increased in the sham group (P<0.05). Compared with the sham group, the LVEF was significantly decreased (P<0.000 1), while the myocardial infarction area, immunoactivity of GSDMD, and the expression levels of Caspase-1, GSDMD and IL-1ß proteins were considerably increased in the model group (P<0.000 1, P<0.001). In comparison with the model group, the decreased ejection fraction and the increased myocardial infarction area, and Caspase-1, GSDMD and IL-1ß expression were reversed in the EA group (P<0.001, P<0.000 1, P<0.01). CONCLUSION: EA preconditioning may ameliorate myocardial injury in MIRI rats which may be associated with its function in down-regulating the expression of myocardial Caspase-1 protein to reduce cardiomyocyte pyroptosis.


Asunto(s)
Electroacupuntura , Infarto del Miocardio , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Daño por Reperfusión , Puntos de Acupuntura , Animales , Caspasa 1/genética , Interleucina-1beta/genética , Masculino , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Isquemia Miocárdica/genética , Isquemia Miocárdica/terapia , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/terapia , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Ratas , Daño por Reperfusión/genética , Daño por Reperfusión/terapia , Volumen Sistólico , Función Ventricular Izquierda
16.
Phytomedicine ; 100: 154055, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35344716

RESUMEN

BACKGROUND: Dahuang Zhechong pill (DHZCP) improves the inhibitory immune status of mice with hepatocellular carcinoma (HCC) by regulating Treg/Th1 balance. HYPOTHESIS/PURPOSE: To study the multi-material basis and multi-mechanisms of DHZCP against HCC by regulating Treg/Th1 balance in vitro and in vivo. METHODS: UPLC-MS/MS was used to detect the dynamic changes in 29 characteristic components of different polar parts of DHZCP. H&E and TUNEL were used to check pathological condition in HCC mice. The number of CD4+T, CD8+T, Treg, Th1, and Th1-like Treg cells was counted by flow cytometry. TGF-ß, IL-10, IFN-γ, and TNF-α content were detected by ELISA. α-Ketoglutarate and glutamine levels were detected by Trace1310/TSQ8000 GC-MS/MS. p-Smad2, and p-Smad3 protein levels were detected by WB, mRNA expression of Smad2, alanine-serine-cysteine transporter-2, glutaminase, and glutamate dehydrogenase were detected by RT-PCR. Simca-p multivariate data analysis software was used to evaluate the relationship between the different polar parts of DHZCP and the proportion of Treg cells. RESULTS: Water-soluble (PW) and ethyl acetate (PE) polar parts of DHZCP affected the HCC immune system by inhibiting the differentiation of Tregs, reversing the balance of Treg/Th1, and significantly reduced the tumor volume and weight. However, petroleum ether and n-butanol polar parts had no above actions. The changes in emodin, chrysophanol, aloe vera emodin, emodin-8-O-ß-D-glycoside, gallic acid, naringenin, baicalein, wogonin, norwogonin, apigenin, chrysin, glycyrrhizin, formononetin, and palmitic acid were closely related to the changes of Treg cells, which is the main material basis of DHZCP inhibition of Treg differentiation. Additionally, PW mainly inhibit the differentiation of Treg cells by affecting the metabolism of hepatoma cells, improving tumor microenvironment acidity, and glutamine depletion. However, PE inhibited the differentiation of Treg cells mainly by regulating the TGF-ß/Smad pathway. CONCLUSION: In this study, accurate analysis of multi-component was combined with pharmacodynamic evaluations to identify the pharmacodynamic substances of DHZCP in regulating Treg/Th1 balance, and clarified the multi-target mechanism of DHZCP to improve tumor immunity. The study style offers a novel approach for pharmacological research on TCM.


Asunto(s)
Carcinoma Hepatocelular , Emodina , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Medicamentos Herbarios Chinos , Glutamina , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Linfocitos T Reguladores , Espectrometría de Masas en Tándem , Factor de Crecimiento Transformador beta , Microambiente Tumoral
17.
Clin Transl Med ; 12(2): e684, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35184390

RESUMEN

BACKGROUND: Multiple myeloma (MM) is a distinctive malignancy of plasma cell within the bone marrow (BM), of which alternative splicing factors play vital roles in the progression. Splicing factor arginine/serine-rich 8 (SFRS8) is the exclusive factor associated with MM prognosis, however its role in MM remains undefined. METHODS: The analyses of 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay, immunohistochemistry, flow cytometry and xenograft model were performed to examine cell proliferation, cell cycle and apoptosis in SFRS8 overexpression or knockdown MM cells in vitro and in vivo. The SFRS8-regulated alternative splicing events were identified by RNA immunoprecipitation sequencing (RIP-seq) and validated by RIP-qPCR and Co-IP methods. Exosomes were extracted from the supernatant of myeloma cells by ultracentrifugation. Bone lesion was evaluated by TRAP staining in vitro and SCID/NOD-TIBIA mouse model. A neon electroporation system was utilised to deliver siRNA through exosomes. The effect of siRNA-loaded exosomes in vivo was evaluated by using a patient-derived tumor xenograft (PDX) model and SCID/NOD-TIBIA mouse model. RESULTS: SFRS8 was significantly upregulated in MM samples and positively associated with poor overall survival (OS) in MM patients. SFRS8 promoted MM cell proliferation in vitro and in vivo. Furthermore, calcyclin binding protein (CACYBP) was identified as the downstream target of SFRS8. Particularly, SFRS8 could reduce CACYBP isoform1 (NM_014412.3) and increase CACYBP isoform2 (NM_001007214.1) by mediating the alternative splicing of CACYBP, thereby altering the ubiquitination degradation of ß-catenin to promote MM progression. In addition, SFRS8 promoted osteoclast differentiation through exosomes in vitro and in vivo. More importantly, exosomal siRNA targeting CACYBP isoform2 inhibited tumour growth in PDX and SCID/NOD-TIBIA mouse models. CONCLUSION: Our findings demonstrate that targeting the SFRS8/CACYBP/ß-catenin axis may be a promising strategy for MM diagnosis and treatment.


Asunto(s)
Mieloma Múltiple/genética , Neoplasias/etiología , Factores de Empalme de ARN/efectos adversos , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/farmacología , Línea Celular/efectos de los fármacos , Humanos , Inmunoquímica/métodos , Inmunoquímica/estadística & datos numéricos , Estimación de Kaplan-Meier , Mieloma Múltiple/fisiopatología , Neoplasias/genética , Neoplasias/fisiopatología , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
19.
Microvasc Res ; 141: 104313, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35041850

RESUMEN

BACKGROUND: Remote ischemic conditioning (RIC) displays a cardioprotective role in acute myocardial infarction (AMI). Since interruption of blood vessel is not an essential trigger of remote cardioprotection, tissue compression may play a prominent part in the effect. The purpose of this study was to confirm the protective effect of tissue compression on AMI and the underlying mechanisms. METHODS AND RESULTS: Rat model of AMI was induced by ligation of the left anterior descending coronary artery. Remote cyclic compression (RCC) on forelimb was applied to AMI rats for 3 days after the operation. RCC postconditioning displayed cardioprotective effects against AMI injury by limiting infarct size, alleviating cardiac dysfunction, and suppressing cardiomyocyte apoptosis. In addition, RCC postconditioning induced myocardial autophagy as evidenced by increased LC3-II and Beclin-1 and reduced mTOR levels. Furthermore, RCC treatment upregulated AMPK phosphorylation in the context of AMI hearts. AMPK inhibitor Compound C administration markedly abrogated RCC-mediated cardioprotective effect, as evidenced by decreased infarct size and cardiac function. CONCLUSION: Our results indicated that RCC postconditioning could attenuate AMI injury through inhibiting apoptosis and promoting autophagy via AMPK signaling pathway. The research provided a novel perspective for studying the cardioprotection of RIC and possible therapeutic strategy for managing AMI injury.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Infarto del Miocardio , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia , Carcinoma de Células Renales/metabolismo , Femenino , Humanos , Neoplasias Renales/metabolismo , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/prevención & control , Miocardio/metabolismo , Ratas
20.
Biomed Chromatogr ; 36(5): e5305, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34967034

RESUMEN

Dahuang Zhechong Pill (DHZCP) is a traditional Chinese medicine prescription used to treat many diseases especially chronic liver disease accompanied by promotion of vascular normalization. In this work, UPLC-Q-TOF-MS/MS analysis was applied to identify the chemical components absorbed in the blood. HIF-1α, VEGF, Ang2 and Tie2 related to vascular normalization were detected to determine the dynamic changes of pharmacodynamic indicators. Then, the spectrum-effect relationship between the UHPLC fingerprint and pharmacodynamic indicators was evaluated dynamically using partial least squares (PLS). As a result, 103 components were identified from rat serum samples, including 56 original compounds and 47 metabolites. According to the PLS, active constituents of DHZCP acting on HIF-1α, VEGF, Ang2 and Tie2 (8, 15, 17 and 20) were found. In subsequent experiments on cells, 7/11 components of HIF-1α/VEGF were found in HepG2 and HUVEC cells, and 11/14/2 components of HIF-1α/VEGF/Tie2. The main pharmacodynamic components of DHZCP in promoting vascular normalization were successfully identified by the spectrum-effect relationship analysis.


Asunto(s)
Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Animales , Medicamentos Herbarios Chinos/farmacología , Ratas , Espectrometría de Masas en Tándem , Factor A de Crecimiento Endotelial Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...