Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 163
1.
Plants (Basel) ; 13(9)2024 May 05.
Article En | MEDLINE | ID: mdl-38732488

Dioscorea alata, commonly known as "greater yam", is a vital crop in tropical and subtropical regions of the world, yet it faces significant threats from anthracnose disease, mainly caused by Colletotrichum gloeosporioides. However, exploring disease resistance genes in this species has been challenging due to the difficulty of genetic mapping resulting from the loss of the flowering trait in many varieties. The receptor-like kinase (RLK) gene family represents essential immune receptors in plants. In this study, genomic analysis revealed 467 RLK genes in D. alata. The identified RLKs were distributed unevenly across chromosomes, likely due to tandem duplication events. However, a considerable number of ancient whole-genome or segmental duplications dating back over 100 million years contributed to the diversity of RLK genes. Phylogenetic analysis unveiled at least 356 ancient RLK lineages in the common ancestor of Dioscoreaceae, which differentially inherited and expanded to form the current RLK profiles of D. alata and its relatives. The analysis of cis-regulatory elements indicated the involvement of RLK genes in diverse stress responses. Transcriptome analysis identified RLKs that were up-regulated in response to C. gloeosporioides infection, suggesting their potential role in resisting anthracnose disease. These findings provide novel insights into the evolution of RLK genes in D. alata and their potential contribution to disease resistance.

2.
Artif Intell Med ; 153: 102887, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38735156

In the contemporary era, the applications of data mining and machine learning have permeated extensively into medical research, significantly contributing to areas such as HIV studies. By reviewing 38 articles published in the past 15 years, the study presents a roadmap based on seven different aspects, utilizing various machine learning techniques for both novice researchers and experienced researchers seeking to comprehend the current state of the art in this area. While traditional regression modeling techniques have been commonly used, researchers are increasingly adopting more advanced fully supervised machine learning and deep learning techniques, which often outperform the traditional methods in predictive performance. Additionally, the study identifies nine new open research issues and outlines possible future research plans to enhance the outcomes of HIV infection risk research. This review is expected to be an insightful guide for researchers, illuminating current practices and suggesting advancements in the field.

3.
Angew Chem Int Ed Engl ; : e202401850, 2024 May 05.
Article En | MEDLINE | ID: mdl-38706222

Seeking high-performance photoresist is an important item for semiconductor industry due to the continuous miniaturization and intelligentization of integrated circuits. Polymer resin containing carbonate group has many desirable properties, such as high transmittance, acid sensitivity and chemical formulation, thus serving as potential photoresist material. In this work, a series of aqueous developable CO2-sourced polycarbonate (CO2-PC) were produced via alternating copolymerization of CO2 and epoxides bearing acid-cleavable cyclic acetal groups in the presence of tetranuclear organoborane catalyst. The produced CO2-PCs were investigated as chemical amplification resists in deep ultraviolet (DUV) lithography. Under the catalysis of photoacid, the acetal (ketal) groups in CO2-PC were hydrolysed into two equivalents of hydroxyl groups, which changes the exposed areas from hydrophobicity to hydrophilicity, thus enabling the exposed regions to be developed in water. Through normalized remaining thickness analysis, the optimal CO2-derived resist achieved a remarkable sensitivity of 1.9 mJ/cm2, a contrast of 7.9, a favorable resolution (750 nm, half pitch), and etching resistance (38% higher than poly(tert-butyl acrylate)). Such performances outperforming commercial KrF and ArF chemical amplification resists (i.e., polyhydroxystyrene-derived and polymethacrylate-based resists), which endows broad application prospects in the field of DUV (248 nm and 193 nm) and extreme ultraviolet (EUV) lithography and nanomanufacturing.

4.
Heliyon ; 10(7): e28593, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38576586

Background: Family involvement and comfort are equally important in palliative care. Dignity undertook a new meaning and novel challenges as a result of restrictions on visits and companionship during the pandemic. Family-centered family dignity interventions have been shown to be effective in increasing patients' sense of dignity, increasing levels of hope, and reducing psychological distress; however, the effectiveness in enhancing family adaptability and intimacy in the survivor-caregiver binary and reducing expected grief have been inconclusive. Objectives: The primary objective of this study was to assess the efficacy of family dignity interventions on family adaptability and cohesion. The secondary objective was to explore the effects of the interventions on anticipatory grief and psychological distress, and the lasting effect 1 month after the intervention. Design: A single-blinded, two-arm parallel group, randomized controlled trial was conducted in China. Settings: and methods: Ninety-eight dyads who met the inclusion criteria were randomly assigned to the family dignity intervention (n = 51) or standard palliative care group (n = 47) between June and August 2022. Study outcomes were measured at baseline, immediately post-intervention, and at the 1-month follow-up post-intervention evaluation. Data were analyzed using the Kolmogorov-Smirnov test, chi-square test, Fisher's exact test, independent sample t-test, Wilcoxon rank-sum test, and generalized estimation equations. The Intention-To-Treat analysis was performed for all available data. Results: In comparison to the control group, significant improvements in family adaptability and cohesion and anticipatory grief over post-intervention and 1-month follow-up were demonstrated among the patients in the intervention group. The intervention group of caregivers had significant improvement in anticipatory grief at post-intervention and 1-month follow-up. The level of psychological distress was significantly lower in the intervention group than the control group (p < 0.05) at 1-month follow-up but the differences were not statistically significant at post-intervention. All outcomes showed clear differences from baseline after the intervention and at the 1-month follow-up evaluation but not between post-intervention and at the 1-month follow-up evaluation. Conclusion: This study further verifies the actual effect of family dignity intervention program through randomized controlled trials, and provides a reference for improving the family relationship between advanced cancer patients and their family caregivers, and improving their mental health. The addition of family dignity intervention to standard palliative care greatly increased the adaptability and cohesion between survivors and their families, lessened the anticipatory grief of the survivor-caregiver pair, and relieved caregivers' anxiety and despair. We did not detect a statistically significant difference between post-intervention and the 1-month follow-up evaluation, suggesting that the intervention may have a durable impact at least 1 month.

5.
Mol Neurobiol ; 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38592585

Subarachnoid hemorrhage (SAH) triggers severe neuroinflammation and cognitive impairment, where microglial M1 polarization exacerbates the injury and M2 polarization mitigates damage. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), carrying microRNA (miR)-140-5p, offer therapeutic promise by targeting the cAMP/PKA/CREB pathway and modulating microglial responses, demonstrating a novel approach for addressing SAH-induced brain injury. This research explored the role of miR-140-5p delivered by MSC-EVs in mitigating brain damage following SAH. Serum from SAH patients and healthy individuals was analyzed for miR-140-5p and cAMP levels. The association between miR-140-5p levels, brain injury severity, and patient survival was examined, along with the target relationship between miR-140-5p and histone deacetylases 7 (HDAC7). MSC-EVs were characterized for their ability to cross the blood-brain barrier and modulate the HDAC7/AKAP12/cAMP/PKA/CREB axis, reducing M1 polarization and inflammation. The therapeutic effect of MSC-EV-miR-140-5p was demonstrated in an SAH mouse model, showing reduced neuronal apoptosis and improved neurological function. This study highlights the potential of MSC-EV-miR-140-5p in mitigating SAH-induced neuroinflammation and brain injury, providing a foundation for developing MSC-EV-based treatments for SAH.

6.
Article En | MEDLINE | ID: mdl-38625559

PURPOSE: To evaluate literature evidences about the efficacy and safety of anti-angiogenesis agents plus chemoradiotherapy versus chemoradiotherapy in the treatment of locally advanced nasopharyngeal carcinoma. METHODS: The relevant literature was systematically searched from the date of establishment to April 2023 in PubMed, Embase, Web of Science, The Cochrane Library, Chinese National Knowledge Infrastructure, Chinese Biological Medicine, Wanfang and VIP database. Search terms included: Nasopharyngeal Neoplasms, Angiogenesis inhibitors, Endostar, Anlotinib, Apatinib, Bevacizumab, Sunitinib, Pazopanib, Chemoradiotherapy. The literature was strictly screened according to the inclusion and exclusion criteria, and 8 eligible studies were finally included in our meta-analysis (4 randomized controlled trials and 4 retrospective studies). RESULTS: A total of 642 patients were included, with 316 in the anti-angiogenesis agents plus chemoradiotherapy group and 326 in the chemoradiotherapy group. The results of our meta-analysis showed that compared with chemoradiotherapy group, the complete response rate (RR = 1.35, 95% CI 1.05-1.74, P = 0.02), objective response rate (RR = 1.26, 95% CI 1.12-1.43, P = 0.0002) in the anti-angiogenesis agents plus chemoradiotherapy group were significantly improved. In terms of safety, there was a higher incidence of cardiac arrhythmia (RR = 3.63, 95% CI 1.16-11.37, P = 0.03) and hypertension (RR = 1.85, 95% CI 1.04-3.27, P = 0.004) in the anti-angiogenesis agents plus chemoradiotherapy group, while no statistically significant differences were reported in other adverse reactions (all P > 0.05). CONCLUSION: Compared with chemoradiotherapy, anti-angiogenesis agents plus chemoradiotherapy could bring more benefits in terms of short-term efficacy, particularly by notably improving both complete response rate and objective response rate, and overall adverse reactions were acceptable. Anti-angiogenesis agents plus chemoradiotherapy may provide a promising direction for the treatment of locally advanced nasopharyngeal carcinoma. SYSTEMATIC REVIEW REGISTRATION: https://inplasy.com/inplasy-2023-8-0076/ , registration number INPLASY202380076.

7.
Anal Chem ; 96(20): 7959-7975, 2024 May 21.
Article En | MEDLINE | ID: mdl-38662943

Spectrum-structure correlation is playing an increasingly crucial role in spectral analysis and has undergone significant development in recent decades. With the advancement of spectrometers, the high-throughput detection triggers the explosive growth of spectral data, and the research extension from small molecules to biomolecules accompanies massive chemical space. Facing the evolving landscape of spectrum-structure correlation, conventional chemometrics becomes ill-equipped, and deep learning assisted chemometrics rapidly emerges as a flourishing approach with superior ability of extracting latent features and making precise predictions. In this review, the molecular and spectral representations and fundamental knowledge of deep learning are first introduced. We then summarize the development of how deep learning assist to establish the correlation between spectrum and molecular structure in the recent 5 years, by empowering spectral prediction (i.e., forward structure-spectrum correlation) and further enabling library matching and de novo molecular generation (i.e., inverse spectrum-structure correlation). Finally, we highlight the most important open issues persisted with corresponding potential solutions. With the fast development of deep learning, it is expected to see ultimate solution of establishing spectrum-structure correlation soon, which would trigger substantial development of various disciplines.

8.
Signal Transduct Target Ther ; 9(1): 101, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643203

Strategies to improve T cell therapy efficacy in solid tumors such as hepatocellular carcinoma (HCC) are urgently needed. The common cytokine receptor γ chain (γc) family cytokines such as IL-2, IL-7, IL-15 and IL-21 play fundamental roles in T cell development, differentiation and effector phases. This study aims to determine the combination effects of IL-21 in T cell therapy against HCC and investigate optimized strategies to utilize the effect of IL-21 signal in T cell therapy. The antitumor function of AFP-specific T cell receptor-engineered T cells (TCR-T) was augmented by exogenous IL-21 in vitro and in vivo. IL-21 enhanced proliferation capacity, promoted memory differentiation, downregulated PD-1 expression and alleviated apoptosis in TCR-T after activation. A novel engineered IL-21 receptor was established, and TCR-T armed with the novel engineered IL-21 receptors (IL-21R-TCR-T) showed upregulated phosphorylated STAT3 expression without exogenous IL-21 ligand. IL-21R-TCR-T showed better proliferation upon activation and superior antitumor function in vitro and in vivo. IL-21R-TCR-T exhibited a less differentiated, exhausted and apoptotic phenotype than conventional TCR-T upon repetitive tumor antigen stimulation. The novel IL-21 receptor in our study programs powerful TCR-T and can avoid side effects induced by IL-21 systemic utilization. The novel IL-21 receptor creates new opportunities for next-generation TCR-T against HCC.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/metabolism , Interleukin Receptor Common gamma Subunit/metabolism , Receptors, Interleukin-21/genetics , Receptors, Interleukin-21/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Liver Neoplasms/metabolism , Receptors, Antigen, T-Cell/genetics , CD8-Positive T-Lymphocytes
9.
Article En | MEDLINE | ID: mdl-38683431

The widespread occurrence of emerging brominated flame retardant tetrabromobisphenol S (TBBPS) has become a major environmental concern. In this study, a nanoscale zero-valent iron (nZVI) impregnated organic montmorillonite composite (nZVI-OMT) was successfully prepared and utilized to degrade TBBPS in aqueous solution. The results show that the nZVI-OMT composite was very stable and reusable as the nZVI was well dispersed on the organic montmorillonite. Organic montmorillonite clay layers provide a strong support, facilitate well dispersion of the nZVI chains, and accelerate the overall TBBPS transformation with a degradation rate constant 5.5 times higher than that of the original nZVI. Four major intermediates, including tribromobisphenol S (tri-BBPS), dibromobisphenol S (di-BBPS), bromobisphenol S (BBPS), and bisphenol S (BPS), were detected by high-resolution mass spectrometry (HRMS), indicating sequential reductive debromination of TBBPS mediated by nZVI-OMT. The effective elimination of acute ecotoxicity predicted by toxicity analysis also suggests that the debromination process is a safe and viable option for the treatment of TBBPS. Our results have shown for the first time that TBBPS can be rapidly degraded by an nZVI-OMT composite, expanding the potential use of clay-supported nZVI composites as an environmentally friendly material for wastewater treatment and groundwater remediation.

10.
Nanoscale ; 16(18): 8851-8857, 2024 May 09.
Article En | MEDLINE | ID: mdl-38644784

The electrochemical nitrate reduction reaction (NO3-RR) is a novel green method for ammonia synthesis. However, the lack of sufficient catalysts has hindered the development of the NO3-RR. This research develops a transformation of porous CoP@N-C/CC into porous phosphorus-rich CoP4@N-C/CC through high-temperature calcination. Due to its unique phosphating-rich structure, CoP4@N-C/CC exhibits an excellent Faraday efficiency (FE: 92.3%) and NH3 yield (610.2 µmol h-1 cm-2). Such a catalyst with more P-P bonds can provide more active sites, effectively enhancing the adsorption and reaction processes of reactant molecules. In addition, the catalyst has good durability and catalytic stability, which provides a possibility for the future application of electrocatalytic ammonia production.

11.
Anal Chem ; 96(17): 6550-6557, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38642045

There is growing interest in developing a high-performance self-supervised denoising algorithm for real-time chemical hyperspectral imaging. With a good understanding of the working function of the zero-shot Noise2Noise-based denoising algorithm, we developed a self-supervised Signal2Signal (S2S) algorithm for real-time denoising with a single chemical hyperspectral image. Owing to the accurate distinction and capture of the weak signal from the random fluctuating noise, S2S displays excellent denoising performance, even for the hyperspectral image with a spectral signal-to-noise ratio (SNR) as low as 1.12. Under this condition, both the image clarity and the spatial resolution could be significantly improved and present an almost identical pattern with a spectral SNR of 7.87. The feasibility of real-time denoising during imaging was well demonstrated, and S2S was applied to monitor the photoinduced exfoliation of transition metal dichalcogenide, which is hard to accomplish by confocal Raman spectroscopy. In general, the real-time denoising capability of S2S offers an easy way toward in situ/in vivo/operando research with much improved spatial and temporal resolution. S2S is open-source at https://github.com/3331822w/Signal2signal and will be accessible online at https://ramancloud.xmu.edu.cn/tutorial.

12.
Cell Commun Signal ; 22(1): 223, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594728

BACKGROUND: Autophagy is a lysosome-dependent degradation pathway that regulates macrophage activation, differentiation, and polarization. Autophagy related 5 (Atg5) is a key protein involved in phagocytic membrane elongation in autophagic vesicles that forms a complex with Atg12 and Atg16L1. Alterations in Atg5 are related to both acute and chronic kidney diseases in experimental models. However, the role of macrophage-expressed Atg5 in acute kidney injury remains unclear. METHODS: Using a myeloid cell-specific Atg5 knockout (MΦ atg5-/-) mouse, we established renal ischemia/reperfusion and unilateral ureteral obstruction models to evaluate the role of macrophage Atg5 in renal macrophage migration and fibrosis. RESULTS: Based on changes in the serum urea nitrogen and creatinine levels, Atg5 deletion had a minimal effect on renal function in the early stages after mild injury; however, MΦ atg5-/- mice had reduced renal fibrosis and reduced macrophage recruitment after 4 weeks of ischemia/reperfusion injury and 2 weeks of unilateral ureteral obstruction injury. Atg5 deficiency impaired the CCL20-CCR6 axis after severe ischemic kidneys. Chemotactic responses of bone marrow-derived monocytes (BMDMs) from MΦ atg5-/- mice to CCL20 were significantly attenuated compared with those of wild-type BMDMs, and this might be caused by the inhibition of PI3K, AKT, and ERK1/2 activation. CONCLUSIONS: Our data indicate that Atg5 deficiency decreased macrophage migration by impairing the CCL20-CCR6 axis and inhibited M2 polarization, thereby improving kidney fibrosis.


Ureteral Obstruction , Animals , Mice , Autophagy-Related Protein 5/metabolism , Fibrosis , Ischemia/metabolism , Kidney/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Receptors, CCR6/metabolism , Ureteral Obstruction/complications , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology
13.
BMC Anesthesiol ; 24(1): 116, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38528479

BACKGROUND: Sufentanil-induced cough is common during the induction of anesthesia. The objective of this study was to determine whether pretreatment with a small dose of esketamine is effective in treating sufentanil-induced cough. METHODS: 220 patients were screened, and 200 patients who had scheduled elective surgery and were between 18 and 70 years old were randomly divided into two groups. Before sufentanil was administered, esketamine group (group K) was injected with 0.15 mg/kg esketamine at 5 s, and control group (group C) was administered with the same volume. Within 1 min after sufentanil(0.4ug/kg) injection during induction, cough incidence and severity were evaluated. After sufentanil was injected, we recorded its hemodynamic changes and side effects. RESULTS: In the esketamine group (group K) and control group (group C), there was an incidence of cough of 5 and 34%, respectively. The esketamine group (group K) had a significantly lower incidence and severity of cough compared to the control group (group C) immediately after sufentanil injection (P < 0.05). MAP and HR did not differ significantly between the two groups during three different times of general anesthesia induction (P > 0.05). CONCLUSION: In our study, we found that sufentanil-induced cough was significantly reduced by pretreatment with 0.15 mg/kg esketamine, but with no significant changes in the hemodynamic status. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR2200063821, registered date: 17/09/2022), http://www.chictr.org.cn.


Ketamine , Sufentanil , Adolescent , Adult , Aged , Humans , Middle Aged , Young Adult , Anesthesia, General , Cough/chemically induced , Cough/prevention & control , Ketamine/therapeutic use , Sufentanil/adverse effects
14.
Int Immunopharmacol ; 131: 111833, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38503012

Nonalcoholic steatohepatitis (NASH), an inflammatory subtype of nonalcoholic fatty liver disease (NAFLD), is characterized by liver steatosis, inflammation, hepatocellular injury and different degrees of fibrosis, and has been becoming the leading cause of liver-related morbidity and mortality worldwide. Unfortunately, the pathogenesis of NASH has not been completely clarified, and there are no approved therapeutic drugs. Recent accumulated evidences have revealed the involvement of macrophage in the regulation of host liver steatosis, inflammation and fibrosis, and different phenotypes of macrophages have different metabolic characteristics. Therefore, targeted regulation of macrophage immunometabolism may contribute to the treatment and prognosis of NASH. In this review, we summarized the current evidences of the role of macrophage immunometabolism in NASH, especially focused on the related function conversion, as well as the strategies to promote its polarization balance in the liver, and hold promise for macrophage immunometabolism-targeted therapies in the treatment of NASH.


Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Liver/pathology , Inflammation/metabolism , Fibrosis , Macrophages/metabolism
15.
Asia Pac J Oncol Nurs ; 11(4): 100389, 2024 Apr.
Article En | MEDLINE | ID: mdl-38495641

Objective: To explore the factors influencing family resilience in adult patients with acute leukemia undergoing chemotherapy, with the aim of providing a theoretical basis for the development of strategies to strengthen their family resilience. Methods: A descriptive phenomenological qualitative research method was used to select 11 adult acute leukemia chemotherapy patients for semi-structured interviews. Colaizzi 7-step analysis and NVivo 12.0 were used to summarize information and refine themes. Results: The main outcomes consisted of two themes and 11 sub-themes: protective factors for family resilience (positive traits, cognitive restructuring, positive family beliefs, organizational flexibility, clear communication, and social support) and risk factors for family resilience (symptom burden, self-concealment, role overload, economic distress, and social alienation). Conclusions: Health care professionals should pay attention to screening protective and risk factors for family resilience in adult acute leukemia chemotherapy patients, affirming the positive role of internal and external resources available in the family in stressful situations, alleviating patients' negative experiences, and promoting the recovery of family function.

16.
J Control Release ; 369: 39-52, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38508523

The emergence of multidrug-resistant bacteria along with their resilient biofilms necessitates the development of creative antimicrobial remedies. We designed versatile fluorinated polymer micelles with surface-charge-switchable properties, demonstrating enhanced efficacy against Methicillin-Resistant Staphylococcus Aureus (MRSA) in planktonic and biofilm states. Polymethacrylate diblock copolymers with pendant fluorocarbon chains and carboxyl betaine groups were prepared using reversible addition-fragmentation chain transfer polymerization. Amphiphilic fluorinated copolymers self-assembled into micelles, encapsulating ciprofloxacin in their cores (CIP@FCBMs) for antibacterial and antibiofilm applications. As a control, fluorine-free copolymer micelles loaded with ciprofloxacin (CIP@BCBMs) were prepared. Although both CIP@FCBMs and CIP@BCBMs exhibited pH-responsive surface charges and lipase-triggered drug release, CIP@FCBMs exhibited powerful antimicrobial and antibiofilm activities in vitro and in vivo, attributed to superior serum stability, higher drug loading, enhanced fluorination-facilitated cellular uptake, and lipase-triggered drug release. Collectively, reversing surface charge, on-demand antibiotic release, and fluorination-mediated nanoparticles hold promise for treating bacterial infections and biofilms.

17.
Heliyon ; 10(6): e27913, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38496860

This study aimed to dynamically track the priorities and potential research hotspots in the field of heart failure with sarcopenia. Using CiteSpace, we analyzed the literature on heart failure with sarcopenia from the Web of Science database from 1995 to 2022. The analysis encompassed 507 records, revealing an overall upward trend in annual publication volume. Europe and the United States emerged as the primary regions for publishing, particularly driven by contributions from developed countries such as the United States, Germany, and Italy. Productive institutions included the Charite Universitatsmedizin Berlin, University Medical Center Gottingen, the German Center for Cardiovascular Research (DZHK), Universita Cattolica del Sacro Cuore, and the National Institute on Aging (NIA). Noteworthy academic groups have formed around these institutions; von Haehling S, Anker Stefan D, Springer J, and Doehner W frequently collaborated. The core journals that frequently published articles in this area included Circulation, European Heart Journal, and The Journals of Gerontology Series A-Biological Sciences and Medical Sciences. Based on the keyword analysis, we identified three key research areas. First, the diagnosis and definition of sarcopenia emerged as significant themes. Second, researchers have focused on exploring the mechanisms underlying heart failure with sarcopenia, including inflammation, insulin resistance, and oxidative stress. Finally, treatment strategies, such as physical activity and nutritional support, constitute another critical research theme. Furthermore, potential research hotspots within this field include clinical randomized controlled trials, investigations into inflammatory mechanisms, cardiac rehabilitation, studies on physical activity, androgen receptor modulators, and investigations into clinical outcomes such as cognitive impairment.

18.
Cancer Immunol Immunother ; 73(3): 49, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38349553

T-cell receptor (TCR) engineered T-cell therapy has recently emerged as a promising adoptive immunotherapy approach for tumor treatment, yet hindered by tumor immune evasion resulting in poor therapeutic efficacy. The introduction of ferroptosis-targeted inducers offers a potential solution, as they empower T cells to induce ferroptosis and exert influence over the tumor microenvironment. Atovaquone (ATO) stands as a prospective pharmaceutical candidate with the potential to target ferroptosis, effectively provoking an excessive generation and accumulation of reactive oxygen species (ROS). In this study, we evaluated the effectiveness of a combination therapy comprising ATO and TCR-T cells against hepatocellular carcinoma (HCC), both in vitro and in vivo. The results of lactate dehydrogenase and cytokine assays demonstrated that ATO enhanced cytotoxicity mediated by AFP-specific TCR-T cells and promoted the release of IFN-γ in vitro. Additionally, in an established HCC xenograft mouse model, the combined therapy with low-dose ATO and TCR-T cells exhibited heightened efficacy in suppressing tumor growth, with no apparent adverse effects, comparable to the results achieved through monotherapy. The RNA-seq data unveiled a significant activation of the ferroptosis-related pathway in the combination therapy group in comparison to the TCR-T cells group. Mechanistically, the synergy between ATO and TCR-T cells augmented the release of IFN-γ by TCR-T cells, while concurrently elevating the intracellular and mitochondrial levels of ROS, expanding the labile iron pool, and impairing the integrity of the mitochondrial membrane in HepG2 cells. This multifaceted interaction culminated in the potentiation of ferroptosis within the tumor, primarily induced by an excess of ROS. In summary, the co-administration of ATO and TCR-T cells in HCC exhibited heightened vulnerability to ferroptosis. This heightened susceptibility led to the inhibition of tumor growth and the stimulation of an anti-tumor immune response. These findings suggest that repurposing atovaquone for adoptive cell therapy combination therapy holds the potential to enhance treatment outcomes in HCC.


Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/therapy , Atovaquone/pharmacology , Atovaquone/therapeutic use , Reactive Oxygen Species , Prospective Studies , Liver Neoplasms/therapy , Receptors, Antigen, T-Cell , Disease Models, Animal , Tumor Microenvironment
19.
Heliyon ; 10(4): e25575, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38370216

The recovery of valuable metals from waste battery materials and the thermal decomposition of PVC both require significant energy and material consumption. In this study, we propose an innovative strategy that integrates the lithium extraction process from spent LiNi0.85Co0.15Al0.05O2 (S-NCA) with PVC pyrolysis, resulting in a substantial reduction in energy consumption and chemical additive. Various characterization techniques, including SEM, TEM, XRD, and XPS, are employed to investigate the mechanism of gas-solid lithium extraction and provide valuable insights into the migration pathway of lithium from S-NCA to soluble LiCl. The optimal conditions for the process were determined as follows: a temperature of 600 °C, S-NCA/PVC mass ratio of 1:4, and a baking time of 2 h, achieving a lithium extraction efficiency of 94.37 %. The research provides valuable insights for the valorization of PVC thermal decomposition and lithium extraction from NCA, presenting a novel approach for future applications.

20.
EClinicalMedicine ; 69: 102482, 2024 Mar.
Article En | MEDLINE | ID: mdl-38374967

Background: Diabetic kidney disease (DKD) is a leading cause of end-stage kidney disease and is associated with high mortality rates. The influence of routine clinical parameters on DKD onset in patients with type 2 diabetes mellitus (T2DM) remains uncertain. Methods: In this systematic review and meta-analysis, we searched multiple databases, including PubMed, Embase, Scopus, Web of Science, and Cochrane Library, for studies published from each database inception until January 11, 2024. We included cohort studies examining the association between DKD onset and various clinical parameters, including body mass index (BMI), hemoglobin A1c (HbA1c), systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and serum uric acid (UA). Random-effect dose-response meta-analyses utilizing one-stage and/or cubic spline models, were used to estimate correlation strength. This study is registered in PROSPERO (CRD42022326148). Findings: This analysis of 46 studies involving 317,502 patients found that in patients with T2DM, the risk of DKD onset increased by 3% per 1 kg/m2 increase in BMI (relative risk (RR) = 1.03, confidence interval (CI) [1.01-1.04], I2 = 70.07%; GRADE, moderate); a 12% increased risk of DKD onset for every 1% increase in HbA1c (RR = 1.12, CI [1.07-1.17], I2 = 94.94%; GRADE, moderate); a 6% increased risk of DKD onset for every 5 mmHg increase in SBP (RR = 1.06. CI [1.03-1.09], I2 = 85.41%; GRADE, moderate); a 2% increased risk of DKD onset per 10 mg/dL increase in TG (RR = 1.02, CI [1.01-1.03], I2 = 78.45%; GRADE, low); an 6% decreased risk of DKD onset per 10 mg/dL increase in HDL (RR = 0.94, CI [0.92-0.96], I2 = 0.33%; GRADE, high), and a 11% increased risk for each 1 mg/dL increase in UA (RR = 1.11, CI [1.05-1.17], I2 = 79.46%; GRADE, moderate). Subgroup analysis revealed a likely higher risk association of clinical parameters (BMI, HbA1c, LDL, and UA) in patients with T2DM for less than 10 years. Interpretation: BMI, HbA1c, SBP, TG, HDL and UA are potential predictors of DKD onset in patients with T2DM. Given high heterogeneity between included studies, our findings should be interpreted with caution, but they suggest monitoring of these clinical parameters to identify individuals who may be at risk of developing DKD. Funding: Shenzhen Science and Innovation Fund, the Hong Kong Research Grants Council, and the HKU Seed Funds, and Scientific and technological innovation project of China Academy of Chinese Medical Sciences.

...