Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Environ Health (Wash) ; 1(4): 236-248, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37881591

Extensive research has used dimethylarsinic acid (DMA) in urine as a marker of arsenic methylation. The premise is that humans methylate inorganic arsenicals to monomethylarsonic acid (MMA) and DMA and excrete these arsenic species into the urine. However, DMA in urine not only comes from the methylation of inorganic arsenic but also could be a result of metabolism of other arsenic species, such as arsenosugars and arsenolipids. Most environmental health and epidemiological studies of arsenic methylation might have overlooked confounding factors that contribute to DMA in urine. Here we critically evaluate reported studies that used methylation indexes, concentration ratios of methylated arsenicals, or the percentage of DMA in urine as markers of arsenic methylation efficiency. Dietary intake of arsenosugars potentially confounds the calculation and interpretation of the arsenic methylation efficiencies. Many studies have not considered incidental dietary intake of arsenosugars, arsenolipids, and other organic arsenic species. Future studies should consider the dietary intake of diverse arsenic species and their potential effect on the urinary concentrations of DMA.

2.
Food Qual Saf ; 7: fyad032, 2023.
Article En | MEDLINE | ID: mdl-37744965

Food and water are the main sources of human exposure to arsenic. It is important to determine arsenic species in food because the toxicities of arsenic vary greatly with its chemical speciation. Extensive research has focused on high concentrations of arsenic species in marine organisms. The concentrations of arsenic species in freshwater fish are much lower, and their determination presents analytical challenges. In this review, we summarize the current state of knowledge on arsenic speciation in freshwater fish and discuss challenges and research needs. Fish samples are typically homogenized, and arsenic species are extracted using water/methanol with the assistance of sonication and enzyme treatment. Arsenic species in the extracts are commonly separated using high-performance liquid chromatography (HPLC) and detected using inductively coupled plasma mass spectrometry (ICPMS). Electrospray ionization tandem mass spectrometry, used in combination with HPLC and ICPMS, provides complementary information for the identification and characterization of arsenic species. The methods and perspectives discussed in this review, covering sample preparation, chromatography separation, and mass spectrometry detection, are directed to arsenic speciation in freshwater fish and applicable to studies of other food items. Despite progress made in arsenic speciation analysis, a large fraction of the total arsenic in freshwater fish remains unidentified. It is challenging to identify and quantify arsenic species present in complex sample matrices at very low concentrations. Further research is needed to improve the extraction efficiency, chromatographic resolution, detection sensitivity, and characterization capability.

3.
Biochem Pharmacol ; 193: 114799, 2021 11.
Article En | MEDLINE | ID: mdl-34678219

Millions of people worldwide are exposed to unacceptable levels of arsenic, a proven human carcinogen, in drinking water. In animal models, arsenic and selenium are mutually protective through formation and biliary excretion of seleno-bis (S-glutathionyl) arsinium ion [(GS)2AsSe]-. Selenium-deficient humans living in arsenic-endemic regions are at increased risk of arsenic-induced diseases, and may benefit from selenium supplementation. The influence of selenium on human arsenic hepatobiliary transport has not been studied using optimal human models. HepaRG cells, a surrogate for primary human hepatocytes, were used to investigate selenium (selenite, selenide, selenomethionine, and methylselenocysteine) effects on arsenic hepatobiliary transport. Arsenite + selenite and arsenite + selenide at different molar ratios revealed mutual toxicity antagonism, with the latter being higher. Significant levels of arsenic biliary excretion were detected with a biliary excretion index (BEI) of 14 ± 8%, which was stimulated to 32 ± 7% by selenide. Consistent with the formation and biliary efflux of [(GS)2AsSe]-, arsenite increased the BEI of selenide from 0% to 24 ± 5%. Arsenic biliary excretion was lost in the presence of selenite, selenomethionine, and methylselenocysteine. Sinusoidal export of arsenic was stimulated ∼1.6-fold by methylselenocysteine, but unchanged by other selenium forms. Arsenic canalicular and sinusoidal transport (±selenide) was temperature- and GSH-dependent and inhibited by MK571. Knockdown experiments revealed that multidrug resistance protein 2 (MRP2/ABCC2) accounted for all detectable biliary efflux of arsenic (±selenide). Overall, the chemical form of selenium and human MRP2 strongly influenced arsenic hepatobiliary transport, information critical for human selenium supplementation in arsenic-endemic regions.


Arsenic/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Multidrug Resistance-Associated Protein 2/metabolism , Selenium Compounds/pharmacology , Cell Line , Cell Survival/drug effects , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Humans , Leukotriene Antagonists/pharmacology , Methyltransferases/genetics , Methyltransferases/metabolism , Multidrug Resistance-Associated Protein 2/genetics , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Propionates/pharmacology , Quinolines/pharmacology , Temperature , Water Pollutants, Chemical/metabolism
4.
Angew Chem Int Ed Engl ; 60(20): 11104-11109, 2021 05 10.
Article En | MEDLINE | ID: mdl-33354860

Protein coronae formed with nanoparticles confer several useful properties. However, the non-specific nature of protein corona formation makes it difficult to deliver specific proteins for therapeutic applications. Herein, we report on the construction of a new type of protein corona, termed binding-mediated protein corona. This new corona enables the efficient and controllable delivery of functional proteins, which is otherwise challenging for conventional protein coronae. We show the design and delivery of the ribonucleoprotein corona for the CRISPR/Cas9 system. Successful gene editing in human cell lines (Hela and HEK293) demonstrates the efficient delivery, high stability, low cytotoxicity, and well-controlled activity of the Cas9-guide RNA ribonucleoprotein. The binding-mediated protein corona strategy opens up new opportunities for therapeutic protein delivery.


CRISPR-Associated Protein 9/chemistry , Protein Corona/chemistry , Ribonucleoproteins/chemistry , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Humans , Particle Size , Protein Binding
5.
Environ Pollut ; 247: 482-487, 2019 Apr.
Article En | MEDLINE | ID: mdl-30703681

Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, ROX) is an arsenic-containing compound widely used as a feed additive in poultry industries. ROX excreted in chicken manure can be transformed by microbes to different arsenic species in the environment. To date, most of the studies on microbial transformation of ROX have focused on anaerobic microorganisms. Here, we isolated a pure cultured aerobic ROX-transforming bacterial strain, CZ-1, from an arsenic-contaminated paddy soil. On the basis of 16S rRNA gene sequence, strain CZ-1 was classified as a member of the genus Enterobacter. During ROX biotransformation by strain CZ-1, five metabolites including arsenate (As[V]), arsenite (As[III]), N-acetyl-4-hydroxy-m-arsanilic acid (N-AHPAA), 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA) and a novel sulfur-containing arsenic species (AsC9H13N2O6S) were detected and identified based on high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS), HPLC-ICP-MS/electrospray ionization mass spectrometry (ESI-MS) and HPLC-electrospray ionization hybrid quadrupole time-of-flight mass spectrometry (ESI-qTOF-MS) analyses. N-AHPAA and 3-AHPAA were the main products, and 3-AHPAA could also be transformed to N-AHPAA. Based on the results, we propose a novel ROX biotransformation pathway by Enterobacter. sp CZ-1, in which the nitro group of ROX is first reduced to amino group (3-AHPAA) and then acetylated to N-AHPAA.


Arsenic/metabolism , Biotransformation , Enterobacter/metabolism , Roxarsone/metabolism , Soil Microbiology , Animals , Arsenic/analysis , Arsenicals , Chickens/metabolism , Chromatography, High Pressure Liquid/methods , Manure , Mass Spectrometry , RNA, Ribosomal, 16S , Roxarsone/analysis , Soil
6.
Environ Sci Technol ; 53(7): 3672-3680, 2019 04 02.
Article En | MEDLINE | ID: mdl-30807126

Dipeptides are widely present in surface water and serve as precursors to form disinfection byproducts (DBPs) during disinfection (e.g., chloramination). Bromide (Br-) and iodide (I-) are common in many source waters, enhancing Br- and I-DBP formation. Recently Cl-, I-, and Cl-I-dipeptides were identified after chloramination of tyrosyl dipeptides in the presence of I- and were detected in authentic disinfected drinking water samples. However, the formation and occurrence of Br- and mixed halogen (Cl, Br, and/or I)-dipeptides in disinfected water have not been studied. Here we investigated the formation of halogenated dipeptides from three aromatic dipeptides, phenylalanylglycine (Phe-Gly), tyrosylalanine (Tyr-Ala), and tyrosylglycine (Tyr-Gly), under chloramination in the presence of Br- and I- at environmentally relevant levels ([Br-] and [I-], 0 and 0 µg L-1, 6 and 30 µg L-1, 30 and 30 µg L-1, 150 and 30 µg L-1, 300 and 30 µg L-1, and 900 and 30 µg L-1, respectively). For the first time, N-Br- and N,N-di-Br- as well as N-Br- N-Cl- and N-Br-3-I-tyrosyl dipeptides were identified using infusion electrospray quadrupole time-of-flight mass spectrometry. Tyrosyl dipeptides produced N-Cl-, 3-I-/3,5-di-I-, and N-Cl-3-I-tyrosyl dipeptides, while Phe-Gly formed only N-Cl-/ N, N-di-Cl-Phe-Gly. To determine halogenated dipeptides in authentic water samples, we developed a new method of solid phase extraction and high-performance liquid chromatography with quadrupole ion trap mass spectrometry using reaction monitoring. 3,5-Di-I-Tyr-Ala and N-Br-Tyr-Ala were detected in treated water but not in the corresponding raw water, warranting further investigation into the occurrence of halogenated peptides in other drinking water systems.


Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Dipeptides , Disinfection , Halogenation
7.
Talanta ; 184: 446-451, 2018 Jul 01.
Article En | MEDLINE | ID: mdl-29674067

Arsenic in hair and nails has been used to assess chronic exposure of humans to environmental arsenic. However, it remains to be seen whether it is appropriate to evaluate acute exposure to sub-lethal doses of arsenic typically used in therapeutics. In this study, hair, fingernail and toenail samples were collected from nine acute promyelocytic leukemia (APL) patients who were administered intravenously the daily dose of 10 mg arsenic trioxide (7.5 mg arsenic) for up to 54 days. These hair and nail samples were analyzed for arsenic species using high performance liquid chromatography separation and inductively coupled plasma mass spectrometry detection (HPLC-ICPMS). Inorganic arsenite was the predominant form among water-extractable arsenicals. Dimethylarsinic acid (DMAV), monomethylarsonic acid (MMAV), monomethylarsonous acid (MMAIII), monomethylmonothioarsonic acid (MMMTAV), and dimethylmonothioarsinic acid (DMMTAV) were also detected in both hair and nail samples. This is the first report of the detection of MMAIII and MMMTAV as metabolites of arsenic in hair and nails of APL patients.


Arsenic/analysis , Arsenicals/therapeutic use , Hair/chemistry , Leukemia, Promyelocytic, Acute/drug therapy , Nails/chemistry , Oxides/therapeutic use , Adult , Arsenic Trioxide , Arsenicals/administration & dosage , Chromatography, High Pressure Liquid , Female , Humans , Male , Mass Spectrometry , Middle Aged , Oxides/administration & dosage , Young Adult
8.
J Environ Sci (China) ; 49: 113-124, 2016 Nov.
Article En | MEDLINE | ID: mdl-28007166

The occurrence of a large number of diverse arsenic species in the environment and in biological systems makes it important to compare their relative toxicity. The toxicity of arsenic species has been examined in various cell lines using different assays, making comparison difficult. We report real-time cell sensing of two human cell lines to examine the cytotoxicity of fourteen arsenic species: arsenite (AsIII), monomethylarsonous acid (MMAIII) originating from the oxide and iodide forms, dimethylarsinous acid (DMAIII), dimethylarsinic glutathione (DMAGIII), phenylarsine oxide (PAOIII), arsenate (AsV), monomethylarsonic acid (MMAV), dimethylarsinic acid (DMAV), monomethyltrithioarsonate (MMTTAV), dimethylmonothioarsinate (DMMTAV), dimethyldithioarsinate (DMDTAV), 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, Rox), and 4-aminobenzenearsenic acid (p-arsanilic acid, p-ASA). Cellular responses were measured in real time for 72hr in human lung (A549) and bladder (T24) cells. IC50 values for the arsenicals were determined continuously over the exposure time, giving rise to IC50 histograms and unique cell response profiles. Arsenic accumulation and speciation were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). On the basis of the 24-hr IC50 values, the relative cytotoxicity of the tested arsenicals was in the following decreasing order: PAOIII≫MMAIII≥DMAIII≥DMAGIII≈DMMTAV≥AsIII≫MMTTAV>AsV>DMDTAV>DMAV>MMAV≥Rox≥p-ASA. Stepwise shapes of cell response profiles for DMAIII, DMAGIII, and DMMTAV coincided with the conversion of these arsenicals to the less toxic pentavalent DMAV. Dynamic monitoring of real-time cellular responses to fourteen arsenicals provided useful information for comparison of their relative cytotoxicity.


Arsenic/toxicity , Arsenicals/adverse effects , Hazardous Substances/toxicity , Cacodylic Acid/analogs & derivatives , Toxicity Tests
9.
J Environ Sci (China) ; 49: 7-27, 2016 Nov.
Article En | MEDLINE | ID: mdl-28007181

Hundreds of millions of people around the world are exposed to elevated concentrations of inorganic and organic arsenic compounds, increasing the risk of a wide range of health effects. Studies of the environmental fate and human health effects of arsenic require authentic arsenic compounds. We summarize here the synthesis and characterization of more than a dozen methylated and thiolated arsenic compounds that are not commercially available. We discuss the methods of synthesis for the following 14 trivalent (III) and pentavalent (V) arsenic compounds: monomethylarsonous acid (MMAIII), dicysteinylmethyldithioarsenite (MMAIII(Cys)2), monomethylarsonic acid (MMAV), monomethylmonothioarsonic acid (MMMTAV) or monothio-MMAV, monomethyldithioarsonic acid (MMDTAV) or dithio-MMAV, monomethyltrithioarsonate (MMTTAV) or trithio-MMAV, dimethylarsinous acid (DMAIII), dimethylarsino-glutathione (DMAIII(SG)), dimethylarsinic acid (DMAV), dimethylmonothioarsinic acid (DMMTAV) or monothio-DMAV, dimethyldithioarsinic acid (DMDTAV) or dithio-DMAV, trimethylarsine oxide (TMAOV), arsenobetaine (AsB), and an arsenicin-A model compound. We have reviewed and compared the available methods, synthesized the arsenic compounds in our laboratories, and provided characterization information. On the basis of reaction yield, ease of synthesis and purification of product, safety considerations, and our experience, we recommend a method for the synthesis of each of these arsenic compounds.


Arsenic/chemistry , Arsenicals/chemistry , Chemical Safety , Environmental Health , Hazardous Substances/chemistry , Ecology
10.
Chem Res Toxicol ; 29(9): 1480-7, 2016 09 19.
Article En | MEDLINE | ID: mdl-27463804

Biotransformation of inorganic arsenic results in the formation of methylarsenicals of both oxygen and sulfur analogues. Aiming to improve our understanding of metabolism of inorganic arsenic in animals, we conducted an animal feeding study with an emphasis on identifying new arsenic metabolites. Female F344 rats were given 0, 1, 10, 25, 50, and 100 µg/g of arsenite (iAs(III)) in the diet. Arsenic species in rat urine were determined using high performance liquid chromatography (HPLC) separation and inductive coupled plasma mass spectrometry (ICPMS) and electrospray ionization tandem mass spectrometry (ESI MS/MS) detection. Nine arsenic species were detected in the urine of the iAs(III)-dosed rats. Seven of these arsenic species were consistent with previous reports, including iAs(III), arsenate, monomethyarsonic acid, dimethylarsinic acid, trimethylarsine oxide, monomethylmonothioarsonic acid, and dimethylmonothioarsinic acid. Two new methyldithioarsencals, monomethyldithioarsonic acid (MMDTA(V)) and dimethyldithioarsinic acid (DMDTA(V)), were identified for the first time in the urine of rats treated with iAs(III). The concentrations of both MMDTA(V) and DMDTA(V) in rat urine were dependent on the dosage of iAs(III) in diet. The concentration of DMDTA(V) was approximately 5 times higher than that of MMDTA(V). MMDTA(V) has not been identified in any biological samples of animals, and DMDTA(V) has not been reported as a metabolite of inorganic arsenic in the rats. The identification of novel methylated dithioarsenicals as metabolites of inorganic arsenic in the rat urine provided further insights into the understanding of the metabolism of arsenic.


Arsenicals/urine , Arsenites/toxicity , Cacodylic Acid/urine , Sodium Compounds/toxicity , Animals , Chromatography, High Pressure Liquid , Female , Rats , Rats, Inbred F344 , Spectrometry, Mass, Electrospray Ionization
11.
Environ Health Perspect ; 124(8): 1174-81, 2016 08.
Article En | MEDLINE | ID: mdl-26992196

BACKGROUND: Chicken meat has the highest per capita consumption among all meat types in North America. The practice of feeding 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, Rox) to chickens lasted for more than 60 years. However, the fate of Rox and arsenic metabolites remaining in chicken are poorly understood. OBJECTIVES: We aimed to determine the elimination of Rox and metabolites from chickens and quantify the remaining arsenic species in chicken meat, providing necessary information for meaningful exposure assessment. METHODS: We have conducted a 35-day feeding experiment involving 1,600 chickens, of which half were control and the other half were fed a Rox-supplemented diet for the first 28 days and then a Rox-free diet for the final 7 days. We quantified the concentrations of individual arsenic species in the breast meat of 229 chickens. RESULTS: Rox, arsenobetaine, arsenite, monomethylarsonic acid, dimethylarsinic acid, and a new arsenic metabolite, were detected in breast meat from chickens fed Rox. The concentrations of arsenic species, except arsenobetaine, were significantly higher in the Rox-fed than in the control chickens. The half-lives of elimination of these arsenic species were 0.4-1 day. Seven days after termination of Rox feeding, the concentrations of arsenite (3.1 µg/kg), Rox (0.4 µg/kg), and a new arsenic metabolite (0.8 µg/kg) were significantly higher in the Rox-fed chickens than in the control. CONCLUSION: Feeding of Rox to chickens increased the concentrations of five arsenic species in breast meat. Although most arsenic species were excreted rapidly when the feeding of Rox stopped, arsenic species remaining in the Rox-fed chickens were higher than the background levels. CITATION: Liu Q, Peng H, Lu X, Zuidhof MJ, Li XF, Le XC. 2016. Arsenic species in chicken breast: temporal variations of metabolites, elimination kinetics, and residual concentrations. Environ Health Perspect 124:1174-1181; http://dx.doi.org/10.1289/ehp.1510530.


Arsenic/analysis , Chickens/metabolism , Environmental Pollutants/analysis , Food Contamination/statistics & numerical data , Meat/analysis , Animals , Arsenic/metabolism , Diet , Environmental Pollutants/metabolism , Humans , Kinetics , North America
12.
Environ Sci Technol ; 50(13): 6737-43, 2016 07 05.
Article En | MEDLINE | ID: mdl-26876684

The poultry industry has used organoarsenicals, such as 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, ROX), to prevent disease and to promote growth. Although previous studies have analyzed arsenic species in chicken litter after composting or after application to agricultural lands, it is not clear what arsenic species were excreted by chickens before biotransformation of arsenic species during composting. We describe here the identification and quantitation of arsenic species in chicken litter repeatedly collected on days 14, 24, 28, 30, and 35 of a Roxarsone-feeding study involving 1600 chickens of two strains. High performance liquid chromatography separation with simultaneous detection by both inductively coupled plasma mass spectrometry and electrospray ionization tandem mass spectrometry provided complementary information necessary for the identification and quantitation of arsenic species. A new metabolite, N-acetyl-4-hydroxy-m-arsanilic acid (N-AHAA), was identified, and it accounted for 3-12% of total arsenic. Speciation analyses of litter samples collected from ROX-fed chickens on days 14, 24, 28, 30, and 35 showed the presence of N-AHAA, 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA), inorganic arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), and ROX. 3-AHPAA accounted for 3-19% of the total arsenic. Inorganic arsenicals (the sum of As(III) and As(V)) comprised 2-6% (mean 3.5%) of total arsenic. Our results on the detection of inorganic arsenicals, methylarsenicals, 3-AHPAA, and N-AHAA in the chicken litter support recent findings that ROX is actually metabolized by the chicken or its gut microbiome. The presence of the toxic metabolites in chicken litter is environmentally relevant as chicken litter is commonly used as fertilizer.


Arsenic , Roxarsone , Animals , Arsanilic Acid , Arsenicals , Cacodylic Acid/metabolism , Chickens/metabolism
13.
Anal Chim Acta ; 888: 1-9, 2015 Aug 12.
Article En | MEDLINE | ID: mdl-26320952

Chicken is the most consumed meat in North America. Concentrations of arsenic in chicken range from µg kg(-1) to mg kg(-1). However, little is known about the speciation of arsenic in chicken meat. The objective of this research was to develop a method enabling determination of arsenic species in chicken breast muscle. We report here enzyme-enhanced extraction of arsenic species from chicken meat, separation using anion exchange chromatography (HPLC), and simultaneous detection with both inductively coupled plasma mass spectrometry (ICPMS) and electrospray ionization tandem mass spectrometry (ESIMS). We compared the extraction of arsenic species using several proteolytic enzymes: bromelain, papain, pepsin, proteinase K, and trypsin. With the use of papain-assisted extraction, 10 arsenic species were extracted and detected, as compared to 8 detectable arsenic species in the water/methanol extract. The overall extraction efficiency was also improved using a combination of ultrasonication and papain digestion, as compared to the conventional water/methanol extraction. Detection limits were in the range of 1.0-1.8 µg arsenic per kg chicken breast meat (dry weight) for seven arsenic species: arsenobetaine (AsB), inorganic arsenite (As(III)), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenate (As(V)), 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone), and N-acetyl-4-hydroxy-m-arsanilic acid (NAHAA). Analysis of breast meat samples from six chickens receiving feed containing Roxarsone showed the presence of (mean±standard deviation µg kg(-1)) AsB (107±4), As(III) (113±7), As(V) (7±2), MMA (51±5), DMA (64±6), Roxarsone (18±1), and four unidentified arsenic species (approximate concentration 1-10 µg kg(-1)).


Arsenic/analysis , Arsenicals/analysis , Chickens , Chromatography, High Pressure Liquid/methods , Meat/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Arsenic/isolation & purification , Arsenic/metabolism , Arsenicals/isolation & purification , Arsenicals/metabolism , Chickens/metabolism , Limit of Detection , Papain/metabolism , Proteolysis
14.
Toxicol Sci ; 145(2): 307-20, 2015 Jun.
Article En | MEDLINE | ID: mdl-25752797

Arsenic is a proven human carcinogen and is associated with a myriad of other adverse health effects. This metalloid is methylated in human liver to monomethylarsonic acid (MMA(V)), monomethylarsonous acid (MMA(III)), dimethylarsinic acid (DMA(V)), and dimethylarsinous acid (DMA(III)) and eliminated predominantly in urine. Hepatic basolateral transport of arsenic species is ultimately critical for urinary elimination; however, these pathways are not fully elucidated in humans. A potentially important human hepatic basolateral transporter is the ATP-binding cassette (ABC) transporter multidrug resistance protein 4 (MRP4/ABCC4) that in vitro is a high-affinity transporter of DMA(V) and the diglutathione conjugate of MMA(III) [MMA(GS)(2)]. In rats, the related canalicular transporter Mrp2/Abcc2 is required for biliary excretion of arsenic as As(GS)(3) and MMA(GS)(2). The current study used sandwich cultured human hepatocytes (SCHH) as a physiological model of human arsenic hepatobiliary transport. Arsenic efflux was detected only across the basolateral membrane for 9 out of 14 SCHH preparations, 5 had both basolateral and canalicular efflux. Basolateral transport of arsenic was temperature- and GSH-dependent and inhibited by the MRP inhibitor MK-571. Canalicular efflux was completely lost after GSH depletion suggesting MRP2-dependence. Treatment of SCHH with As(III) (0.1-1 µM) dose-dependently increased MRP2 and MRP4 levels, but not MRP1, MRP6, or aquaglyceroporin 9. Treatment of SCHH with oltipraz (Nrf2 activator) increased MRP4 levels and basolateral efflux of arsenic. In contrast, oltipraz increased MRP2 levels without increasing biliary excretion. These results suggest arsenic basolateral transport prevails over biliary excretion and is mediated at least in part by MRPs, most likely including MRP4.


Arsenic/metabolism , Bile Ducts/metabolism , Hepatocytes/metabolism , Bile Ducts/drug effects , Biological Transport , Cell Culture Techniques , Dose-Response Relationship, Drug , Glutathione/metabolism , HEK293 Cells , Hepatocytes/drug effects , Humans , Kinetics , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , NF-E2-Related Factor 2/agonists , NF-E2-Related Factor 2/metabolism , Propionates/pharmacology , Pyrazines/pharmacology , Quinolines/pharmacology , Temperature , Thiones , Thiophenes , Transfection
15.
J Chromatogr A ; 1370: 40-9, 2014 Nov 28.
Article En | MEDLINE | ID: mdl-25459646

Human exposure to high concentrations of arsenic from water and food is an important health concern. Although 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone) was used for more than 60 years as a feed additive to feed chickens, little is known about the metabolism of this arsenic species in chicken. Determination of potential arsenic metabolites present at trace concentrations is an analytical challenge, requiring efficient separation and sensitive detection. The primary objective of this research is to develop a method that enables the identification and quantification of various arsenic species in chicken liver. This report describes a method of high performance liquid chromatography (HPLC) separation with both inductively coupled plasma mass spectrometry (ICPMS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS) detection. Anion exchange HPLC enabled the separation of Roxarsone and other arsenic species within 12 min. Detection with both ICPMS and ESI-MS/MS allowed for identification and quantification of eight arsenic species in chicken livers, including arsenobetaine, inorganic arsenite, dimethylarsinic acid, monomethylarsonic acid, inorganic arsenate, 3-amino-4-hydroxyphenylarsonic acid, N-acetyl-4-hydroxyphenylarsonic acid (N-AHPAA), and Roxarsone. The concentrations of these arsenic species, with the exception of arsenobetaine, are significantly higher in the Roxarsone-fed chickens than in the control chickens. The simultaneous detection by both ICPMS and ESIMS from the same HPLC separation allowed for comparison of peaks in both ICPMS and ESIMS chromatograms. This is advantageous over two separate analyses, particularly when HPLC retention times might fluctuate due to sample matrix effect. HPLC separation with the complementary atomic and molecular mass spectrometry detection prevented misidentification of co-eluting compounds, as demonstrated by the determination of two possible metabolites of Roxarsone, N-AHPAA and 4-amino-phenylarsonic acid (4-APAA). N-AHPAA was confirmed by HPLC separation with simultaneous arsenic-specific detection by ICPMS and multiple reaction monitoring by ESIMS. Although an arsenic-containing compound had identical retention time as 4-APAA in the HPLC­ICPMS chromatogram, it was ruled out as 4-APAA from the simultaneous detection by ESIMS. The identification and quantitation of trace arsenic species present in complex samples demonstrate the potential of HPLC separation with simultaneous ICPMS and ESIMS detection for other speciation applications.


Arsenic/analysis , Chromatography, High Pressure Liquid/methods , Liver/chemistry , Tandem Mass Spectrometry/methods , Animals , Chickens , Limit of Detection
16.
Toxicol Sci ; 137(1): 36-46, 2014 Jan.
Article En | MEDLINE | ID: mdl-24097667

Inorganic arsenic (iAs) is a known human carcinogen at high exposures, increasing the incidences of urinary bladder, skin, and lung cancers. In most mammalian species, ingested iAs is excreted mainly through urine primarily as dimethylarsinic acid (DMA(V)). In wild-type (WT) mice, iAs, DMA(V), and dimethylarsinous acid (DMA(III)) exposures induce formation of intramitochondrial urothelial inclusions. Arsenite (iAs(III)) also induced intranuclear inclusions in arsenic (+3 oxidation state) methyltransferase knockout (As3mt KO) mice. The arsenic-induced formation of inclusions in the mouse urothelium was dose and time dependent. The inclusions do not occur in iAs-treated rats and do not appear to be related to arsenic-induced urothelial cytotoxicity. Similar inclusions in exfoliated urothelial cells from humans exposed to iAs have been incorrectly identified as micronuclei. We have characterized the urothelial inclusions using transmission electron microscopy (TEM), DNA-specific 4',6-diamidino-2-phenylindole (DAPI), and non-DNA-specific Giemsa staining and determined the arsenical content. The mouse inclusions stained with Giemsa but not with the DAPI stain. Analysis of urothelial mitochondrial- and nuclear-enriched fractions isolated from WT (C57BL/6) and As3mt KO mice exposed to arsenate (iAs(V)) for 4 weeks showed higher levels of iAs(V) in the treated groups. iAs(III) was the major arsenical present in the enriched nuclear fraction from iAs(V)-treated As3mt KO mice. In conclusion, the urothelial cell inclusions induced by arsenicals appear to serve as a detoxifying sequestration mechanism similar to other metals, and they do not represent micronuclei.


Cacodylic Acid/analogs & derivatives , Carcinogens/toxicity , Cell Nucleus/drug effects , Inclusion Bodies/drug effects , Mitochondria/drug effects , Urinary Bladder/drug effects , Urothelium/drug effects , Animals , Cacodylic Acid/toxicity , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Dose-Response Relationship, Drug , Female , Inclusion Bodies/metabolism , Inclusion Bodies/ultrastructure , Methyltransferases/deficiency , Methyltransferases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Transmission , Mitochondria/metabolism , Mitochondria/ultrastructure , Time Factors , Urinary Bladder/metabolism , Urinary Bladder/ultrastructure , Urothelium/metabolism , Urothelium/ultrastructure
17.
Chem Res Toxicol ; 26(6): 952-62, 2013 Jun 17.
Article En | MEDLINE | ID: mdl-23734817

Arsenic speciation in blood can improve understanding of the metabolism and toxicity of arsenic. In this study, arsenic species in the plasma and red blood cells (RBCs) of arsenite-treated female F344 rats were characterized using anion exchange and size exclusion chromatography separation with inductively coupled plasma mass spectrometry (ICPMS) and electrospray ionization tandem mass spectrometry (ESI MS/MS) detection. Arsenite (iAs(III)), arsenate (iAs(V)), monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), trimethylarsine oxide (TMAO(V)), monomethylmonothioarsonic acid (MMMTA(V)), and dimethylmonothioarsinic acid (DMMTA(V)) were detected in the plasma, with DMA(V) being the predominant metabolite. Upon oxidative pretreatment with 5% hydrogen peroxide (H2O2), plasma proteins released bound arsenic in the form of DMA(V) as the major species and MMA(V) as the minor species. The ratio of protein-bound arsenic to total arsenic decreased with increasing dosage of iAs(III) administered to the rats, suggesting a possible saturation of the binding capacity of the plasma proteins. The proportion of the protein-bound arsenic in the plasma varied among rats. In the H2O2-treated lysates of red blood cells of rats, DMA(V) was consistently found as the predominant arsenic species, probably reflecting the preferential binding of dimethylarsinous acid (DMA(III)) to rat hemoglobin. iAs(V), MMA(V), and trimethylarsine oxide (TMAO(V)) were also detected in the hydrogen peroxide-treated lysates of red blood cells. Importantly, DMMTA(V) and MMMTA(V) have not been reported in rat blood, and the present finding of DMMTA(V) and MMMTA(V) in the rat plasma is toxicologically relevant because these pentavalent thioarsenicals are more toxic than their counterparts DMA(V) and MMA(V). Identifying novel thiolated arsenicals and determining protein-bound arsenicals in the blood provide useful insights into the metabolism and toxicity of arsenic in animals.


Arsenic/blood , Arsenic/chemistry , Arsenites/blood , Arsenites/pharmacology , Animals , Chromatography, High Pressure Liquid , Diet , Female , Rats , Rats, Inbred F344 , Spectrometry, Mass, Electrospray Ionization
18.
Anal Bioanal Chem ; 405(6): 1903-11, 2013 Feb.
Article En | MEDLINE | ID: mdl-23318765

Arsenic trioxide has been successfully used as a therapeutic in the treatment of acute promyelocytic leukemia (APL). Detailed monitoring of the therapeutic arsenic and its metabolites in various accessible specimens of APL patients can contribute to improving treatment efficacy and minimizing arsenic-induced side effects. This article focuses on the determination of arsenic species in saliva samples from APL patients undergoing arsenic treatment. Saliva samples were collected from nine APL patients over three consecutive days. The patients received 10 mg arsenic trioxide each day via intravenous infusion. The saliva samples were analyzed using high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry. Monomethylarsonous acid and monomethylmonothioarsonic acid were identified along with arsenite, dimethylarsinic acid, monomethylarsonic acid, and arsenate. Arsenite was the predominant arsenic species, accounting for 71.8 % of total arsenic in the saliva. Following the arsenic infusion each day, the percentage of methylated arsenicals significantly decreased, possibly suggesting that the arsenic methylation process was saturated by the high doses immediately after the arsenic infusion. The temporal profiles of arsenic species in saliva following each arsenic infusion over 3 days have provided information on arsenic exposure, metabolism, and excretion. These results suggest that saliva can be used as an appropriate clinical biomarker for monitoring arsenic species in APL patients.


Antineoplastic Agents/metabolism , Arsenicals/metabolism , Arsenites/analysis , Leukemia, Promyelocytic, Acute/metabolism , Oxides/metabolism , Saliva/chemistry , Adult , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Arsenates/analysis , Arsenic Trioxide , Arsenicals/analysis , Arsenicals/pharmacokinetics , Arsenicals/pharmacology , Cacodylic Acid/analysis , Chromatography, High Pressure Liquid , Drug Administration Schedule , Female , Humans , Infusions, Intravenous , Leukemia, Promyelocytic, Acute/drug therapy , Male , Methylation , Middle Aged , Oxides/pharmacokinetics , Oxides/pharmacology , Spectrophotometry, Atomic
19.
Toxicology ; 299(2-3): 155-9, 2012 Sep 28.
Article En | MEDLINE | ID: mdl-22664484

Inorganic arsenic is a known human carcinogen, inducing tumors of the skin, urinary bladder and lung. It is metabolized to organic methylated arsenicals. 2,3-Dimercaptopropane-1-sulfonic acid (DMPS), a chelating agent, is capable of reducing pentavalent arsenicals to the trivalent state and binding to the trivalent species, and it has been used in the treatment of heavy metal poisoning in humans. Therefore, we investigated the ability of DMPS to inhibit the cytotoxicity and regenerative urothelial cell proliferation induced by arsenate administration in vivo. Female rats were treated for 4 weeks with 100 ppm As(V). DMPS (2800 ppm) co-administered in the diet significantly reduced the As(V)-induced cytotoxicity of superficial cells detected by scanning electron microscopy (SEM), and the incidence of simple hyperplasia observed by light microscopy and the bromodeoxyuridine (BrdU) labeling index. It also reduced the total concentration of arsenicals in the urine and the methylation of arsenic. There were no differences in oxidative stress as assessed by immunohistochemical staining for 8-hydroxy-2'-deoxyguanosine (8OHdG) of the bladder urothelium. No differences were detected in urine sediments between groups. These data suggest that DMPS has the ability to inhibit both arsenate-induced acute toxicity and regenerative proliferation of the rat bladder epithelium, most likely by decreasing exposure of the urothelium to trivalent arsenicals excreted in the urine. These data provide additional evidence that the effects of arsenate exposure in vivo do not appear to be related to oxidative effects on dG in DNA.


Arsenates/toxicity , Chelating Agents/pharmacology , Unithiol/pharmacology , Urinary Bladder/drug effects , Urothelium/drug effects , 8-Hydroxy-2'-Deoxyguanosine , Animals , Arsenates/urine , Cell Line , Cell Survival/drug effects , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism , Female , Immunohistochemistry , Microscopy, Electron, Scanning , Random Allocation , Rats , Rats, Inbred F344 , Urinary Bladder/metabolism , Urinary Bladder/pathology , Urothelium/metabolism , Urothelium/pathology
20.
Water Res ; 46(14): 4351-60, 2012 Sep 15.
Article En | MEDLINE | ID: mdl-22739498

Consumption of chlorinated drinking water has shown somewhat consistent association with increased risk of bladder cancer in a series of epidemiological studies, but plausible causative agents have not been identified. Halobenzoquinones (HBQs) have been recently predicted as putative disinfection byproducts (DBPs) that might be of toxicological relevance. This study reports the occurrence frequencies and concentrations of HBQs in plant effluents from nine drinking water treatment plants in the USA and Canada, where four common disinfection methods, chlorination, chloramination, chlorination with chloramination, and ozonation with chloramination, are used. In total, 16 water samples were collected and analyzed for eight HBQs: 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), 2,6-dibromo-1,4-benzoquinone (2,6-DBBQ), 2,6-dichloro-3-methyl-1,4-benzoquinone (2,6-DC-3-MBQ), 2,3,6-trichloro-1,4-benzoquinone (2,3,6-TriCBQ), 2,5-dibromo-1,4-benzoquinone (2,5-DBBQ), 2,3-dibromo-5,6-dimethyl-1,4-benzoquinone (2,3-DB-5,6-DM-BQ), tetrabromo-1,4-benzoquinone (TetraB-1,4-BQ), and tetrabromo-1,2-benzoquinone (TetraB-1,2-BQ). Of these, 2,6-DCBQ, 2,6-DBBQ, 2,6-DC-3-MBQ and 2,3,6-TriCBQ were detected in 16, 11, 6, and 3 of the 16 samples with the method detection limit (DL) of 1.0, 0.5, 0.9 and 1.5 ng/L, respectively, using a solid phase extraction and high performance liquid chromatography-tandem mass spectrometry method. The concentrations were in the ranges of 4.5-274.5 ng/L for 2,6-DCBQ, below DL to 37.9 ng/L for 2,6-DBBQ, below DL to 6.5 ng/L for 2,6-DC-3-MBQ, and below DL to 9.1 ng/L for 2,3,6-TriCBQ. These authentic samples show DCBQ and DBBQ as the most abundant and frequently detectable HBQs. In addition, laboratory controlled experiments were performed to examine the formation of HBQs and their subsequent stability toward hydrolysis when the disinfectants, chlorine, chloramine, or ozone followed by chloramines, reacted with phenol (a known precursor) under various conditions. The controlled reactions demonstrate that chlorination produces the highest amounts of DCBQ, while pre-ozonation increases the formation of DBBQ in the presence of bromide. At pH < 6.8, 2,6-DCBQ was observed to be stable, but it was easily hydrolyzed to form mostly 3-hydroxyl-2,6-DCBQ at pH 7.6 in drinking water.


Benzoquinones/analysis , Benzoquinones/chemistry , Disinfection/methods , Drinking Water/chemistry , Water Purification/methods , Canada , Chloramines/chemistry , Halogenation , Hydrogen-Ion Concentration , Hydrolysis , Laboratories , Mass Spectrometry , Phenols/chemistry , Reproducibility of Results , United States
...