Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 21: 2316-2331, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035547

RESUMEN

Background: To identify potential diagnostic and prognostic biomarkers of the early stage of sepsis. Methods: The differentially expressed genes (DEGs) between sepsis and control transcriptomes were screened from GSE65682 and GSE134347 datasets. The candidate biomarkers were identified by the least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination (SVM-RFE) analyses. The diagnostic and prognostic abilities of the markers were evaluated by plotting receiver operating characteristic (ROC) curves and Kaplan-Meier survival curves. Gene Set Enrichment Analysis (GSEA) and single-sample GSEA (ssGSEA) were performed to further elucidate the molecular mechanisms and immune-related processes. Finally, the potential biomarkers were validated in a septic mouse model by qRT-PCR and western blotting. Results: Eleven DEGs were identified between the sepsis and control samples, including YOD1, GADD45A, BCL11B, IL1R2, UGCG, TLR5, S100A12, ITK, HP, CCR7 and C19orf59 (all AUC>0.9). Furthermore, the survival analysis identified YOD1, GADD45A, BCL11B and IL1R2 as the prognostic biomarkers of sepsis. According to GSEA, four DEGs were significantly associated with immune-related processes. In addition, ssGSEA demonstrated a significant difference in the enriched immune cell populations between the sepsis and control groups (all P < 0.05). Moreover, YOD1, GADD45A and IL1R2 were upregulated, and BCL11B was downregulated in the heart, liver, lungs, and kidneys of the septic mice model. Conclusions: We identified four potential immune-releated diagnostic and prognostic gene markers for sepsis that offer new insights into its underlying mechanisms.

2.
J Clin Med ; 12(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36614895

RESUMEN

Hemophagocytic lymphohistiocytosis (HLH) is an overwhelming immune system activation that manifests as hyperinflammation and life-threatening multiple organ failure. However, the clinical manifestations of the systemic inflammatory response in sepsis and fulminant cytokine storm caused by HLH macrophage activation are very similar and difficult to distinguish. HLH triggered by two novel gene defects manifesting with multiorgan dysfunction syndrome (MODS) and distributive shock has not been reported. A 14-year-old male patient was hospitalized with a high fever, his condition deteriorated rapidly, accompanied by cytopenia, shock, and MODS, and he was subsequently transferred to our intensive care unit (ICU) for symptomatic and organ-supportive treatments. Laboratory indicators of cytopenia, hypofibrinogenemia, hypertriglyceridemia, hyperferritinemia, high soluble CD25, low natural killer (NK) cell cytotoxicity, and hemophagocytosis in the bone marrow confirmed the diagnosis of HLH. Molecular genetic analysis revealed that two novel heterozygous gene mutations in AP3B1 (c.3197 C > T) and ATM (c.8077 G > T) might have accounted for the onset. After treatment, the patient's condition successfully improved. This case report demonstrates the timely determination of underlying triggers and critical care supports (supportive and etiological treatment) of HLH related to the improved outcome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...