Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Inorg Chem ; 63(21): 10022-10030, 2024 May 27.
Article En | MEDLINE | ID: mdl-38748907

In this work, phase-pure Mg1.8(Ni1-xCox)0.2Al4Si5O18 (0 ≤ x ≤ 1) ceramics were synthesized by a high-temperature solid-state method. On the basis of Rietveld refinement data of X-ray powder diffraction and Phillips-Vechten-Levine theory, the atomic ionicity, lattice energy, and bond energy of the compound were calculated to explore their influence on the microwave dielectric properties of ceramics. The Mg1.8Ni0.1Co0.1Al4Si5O18 (x = 0.5) ceramic exhibited the best microwave dielectric properties: εr = 4.44, Qf = 73 539 GHz@13 GHz, and τf = -23.9 ppm/°C. (Ni1-xCox)2+ complex ionic doping, compared with only Ni2+ or Co2+, is beneficial for improving the symmetry of [Si4Al2O18] hexagonal rings and reducing distortion. Subsequently, 8 wt % TiO2 was added to Mg1.8Ni0.1Co0.1Al4Si5O18, resulting in a near-zero τf and high Qf values for the composite ceramic, with εr = 5.22, Qf = 58 449 GHz@13 GHz, and τf = -2.06 ppm/°C. Finally, a 5G millimeter-wave antenna with a central operating frequency of 25.52 GHz was designed and fabricated using the Mg1.8Ni0.1Co0.1Al4Si5O18-8 wt % TiO2 ceramics. Operating in the 24.7-26.0 GHz range, it demonstrated favorable radiation characteristics with a simulated efficiency of 85.2% and a gain of 4.58 dBi. The antenna's performance confirms the high potential of the cordierite composite for application in 5G communication systems.

2.
Phys Rev Lett ; 130(7): 076801, 2023 Feb 17.
Article En | MEDLINE | ID: mdl-36867791

For the first time, the origin of large electrostrain in pseudocubic BiFeO_{3}-based ceramics is verified with direct structural evidence backed by appropriate simulations. We employ advanced structural and microstructural characterizations of BiFeO_{3}-based ceramics that exhibit large electrostrain (>0.4%) to reveal the existence of multiple, nanoscale local symmetries, dominantly tetragonal or orthorhombic, which have a common, averaged direction of polarization over larger, meso- or microscale regions. Phase-field simulations confirm the existence of local nanoscale symmetries, thereby providing a new vision for designing high-performance lead-free ceramics for high-strain actuators.

3.
Nat Commun ; 12(1): 5559, 2021 Sep 21.
Article En | MEDLINE | ID: mdl-34548484

Spin-orbit coupled honeycomb magnets with the Kitaev interaction have received a lot of attention due to their potential of hosting exotic quantum states including quantum spin liquids. Thus far, the most studied Kitaev systems are 4d/5d-based honeycomb magnets. Recent theoretical studies predicted that 3d-based honeycomb magnets, including Na2Co2TeO6 (NCTO), could also be a potential Kitaev system. Here, we have used a combination of heat capacity, magnetization, electron spin resonance measurements alongside inelastic neutron scattering (INS) to study NCTO's quantum magnetism, and we have found a field-induced spin disordered state in an applied magnetic field range of 7.5 T < B (⊥ b-axis) < 10.5 T. The INS spectra were also simulated to tentatively extract the exchange interactions. As a 3d-magnet with a field-induced disordered state on an effective spin-1/2 honeycomb lattice, NCTO expands the Kitaev model to 3d compounds, promoting further interests on the spin-orbital effect in quantum magnets.

4.
Chem Rev ; 121(10): 6124-6172, 2021 May 26.
Article En | MEDLINE | ID: mdl-33909415

Materials exhibiting high energy/power density are currently needed to meet the growing demand of portable electronics, electric vehicles and large-scale energy storage devices. The highest energy densities are achieved for fuel cells, batteries, and supercapacitors, but conventional dielectric capacitors are receiving increased attention for pulsed power applications due to their high power density and their fast charge-discharge speed. The key to high energy density in dielectric capacitors is a large maximum but small remanent (zero in the case of linear dielectrics) polarization and a high electric breakdown strength. Polymer dielectric capacitors offer high power/energy density for applications at room temperature, but above 100 °C they are unreliable and suffer from dielectric breakdown. For high-temperature applications, therefore, dielectric ceramics are the only feasible alternative. Lead-based ceramics such as La-doped lead zirconate titanate exhibit good energy storage properties, but their toxicity raises concern over their use in consumer applications, where capacitors are exclusively lead free. Lead-free compositions with superior power density are thus required. In this paper, we introduce the fundamental principles of energy storage in dielectrics. We discuss key factors to improve energy storage properties such as the control of local structure, phase assemblage, dielectric layer thickness, microstructure, conductivity, and electrical homogeneity through the choice of base systems, dopants, and alloying additions, followed by a comprehensive review of the state-of-the-art. Finally, we comment on the future requirements for new materials in high power/energy density capacitor applications.

5.
ACS Appl Mater Interfaces ; 12(39): 43942-43949, 2020 Sep 30.
Article En | MEDLINE | ID: mdl-32885648

Ceramic dielectrics are reported with superior energy storage performance for applications, such as power electronics in electrical vehicles. A recoverable energy density (Wrec) of ∼4.55 J cm-3 with η ∼ 90% is achieved in lead-free relaxor BaTiO3-0.06Bi2/3(Mg1/3Nb2/3)O3 ceramics at ∼520 kV cm-1. These ceramics may be co-fired with Ag/Pd, which constitutes a major step forward toward their potential use in the fabrication of commercial multilayer ceramic capacitors. Compared to stoichiometric Bi(Mg2/3Nb1/3)O3-doped BaTiO3 (BT), A-site deficient Bi2/3(Mg1/3Nb2/3)O3 reduces the electrical heterogeneity of BT. Bulk conductivity differs from the grain boundary only by 1 order of magnitude which, coupled with a smaller volume fraction of conducting cores due to enhanced diffusion of the dopant via A-site vacancies in the A-site sublattice, results in higher breakdown strength under an electric field. This strategy can be employed to develop new dielectrics with improved energy storage performance.

6.
Phys Rev Lett ; 122(3): 037001, 2019 Jan 25.
Article En | MEDLINE | ID: mdl-30735415

We have systematically studied physical properties of Ba(Fe_{0.97}Cr_{0.03})_{2}(As_{1-x}P_{x})_{2}, where superconductivity in BaFe_{2}(As_{1-x}P_{x})_{2} is fully suppressed by just 3% of Cr substitution of Fe. A quantum critical point is revealed at x∼0.42, where non-Fermi-liquid behaviors similar to those in BaFe_{2}(As_{1-x}P_{x})_{2} are observed. Neutron diffraction and inelastic neutron scattering measurements suggest that the quantum critical point is associated with the antiferromagnetic order, which is not of conventional spin-density-wave type as evidenced by the ω/T scaling of spin excitations. On the other hand, no divergence of low-temperature nematic susceptibility is observed when x is decreased to 0.42 from higher doping level, demonstrating that there are no nematic quantum critical fluctuations. Our results suggest that non-Fermi-liquid behaviors in iron-based superconductors can be solely resulted from the antiferromagnetic quantum critical fluctuations, which cast doubts on the role of nematic fluctuations played in the normal-state properties in iron-based superconductors.

7.
Sci Rep ; 7(1): 13637, 2017 10 20.
Article En | MEDLINE | ID: mdl-29057993

The first experimental characterization of a multiple energy analysis wide angle backend for a cold triple-axis spectrometer is reported. The multi-analyzer module MultiFLEXX employs 155 detection channels which simultaneously probe an extensive range in wavevector and energy transfer. Successful mapping of magnetic excitations in MnF2 and Ho demonstrate order of magnitude gains in data collection efficiency using this novel type backend. MultiFLEXX is competitive to standard triple-axis spectroscopy in terms of energy resolution and signal-to-noise ratio. A minority of the detector channels is affected by spurious signals inherent to this multiplexing concept. The characteristic signature of these spurious signals easily allows for their discrimination. The instrument concept focuses on detection efficiency in the horizontal scattering plane which makes it an ideal technique for fast mapping and parametric studies including extreme sample environment.

...