Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Article En | MEDLINE | ID: mdl-38764086

It is important to explore the characteristics and rules of atmospheric aerosol in the East Asian Sea for monitoring and evaluating atmospheric environmental quality. Based on Aerosol Robot Network (AERONET), Visible Infrared Imaging Radiometer (VIIRS), and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data, the temporal and spatial variation characteristics and differences of aerosol parameters and types in the East Asian Sea were studied by using figure classification method (FIGCM), aerosol optical depth (AOD)440-Angstrom exponent (AE)440-870 method (AA1M), and AOD550-AE490-670 method (AA2M). The results show that the seasonal variation trend of aerosol characteristics and types is obvious in East Asia Sea. AOD, volume concentration (Cv), and aerosol effective radius (reff) in the Bohai-Yellow Sea and the Sea of Japan in autumn are lower than those in other seasons, and the occurrence frequency of ocean-type aerosols is high. Different from the Bohai-Yellow Sea and Sea of Japan, human activities in winter, summer, and autumn seriously affect the air quality in the East China Sea and South China Sea. Especially at the Taipei CWB site, from aerosol parameters and high biomass burning/urban industrial (BB/UI) aerosol, human activity is an important factor for high pollution at the Taipei CWB site. Aerosol types of AA1M, FIGCM, AA2M, and CALIPSO were compared at Anmyon and Yonsei University sites in the Bohai-Yellow Sea in March 2020. The results show that aerosol types based on threshold classification methods generally have higher mixed aerosol results, and the marine (MA) results of AA1M, FIGCM, and AA2M are close to the clean marine aerosol results of CALIPSO. Comparing the results of AA 2 M and CALIPSO on a spatial scale, it is found that the clean marine aerosol proportion identified by CALIPSO (0.38, 0.48, 0.82) is consistent with the MA proportion identified by AA 2 M (0.43, 0.46, 0.97) in the East China Sea, South China Sea, and Western Pacific Ocean.

2.
Toxics ; 11(10)2023 Sep 26.
Article En | MEDLINE | ID: mdl-37888664

The atmosphere over the ocean is an important research field that involves multiple aspects such as climate change, atmospheric pollution, weather forecasting, and marine ecosystems. It is of great significance for global sustainable development. Satellites provide a wide range of measurements of marine aerosol optical properties and are very important to the study of aerosol characteristics over the ocean. In this study, aerosol optical depth (AOD) data from seventeen AERONET (Aerosol Robotic Network) stations were used as benchmark data to comprehensively evaluate the data accuracy of six aerosol optical thickness products from 2013 to 2020, including MODIS (Moderate-resolution Imaging Spectrometer), VIIRS (Visible Infrared Imaging Radiometer Suite), MISR (Multi-Angle Imaging Spectrometer), OMAERO (OMI/Aura Multi-wavelength algorithm), OMAERUV (OMI/Aura Near UV algorithm), and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) in the East Asian Ocean. In the East Asia Sea, VIIRS AOD products generally have a higher correlation coefficient (R), expected error within ratio (EE within), lower root mean square error (RMSE), and median bias (MB) than MODIS AOD products. The retrieval accuracy of AOD data from VIIRS is the highest in spring. MISR showed a higher EE than other products in the East Asian Ocean but also exhibited systematic underestimation. In most cases, the OMAERUV AOD product data are of better quality than OMAERO, and OMAERO overestimates AOD throughout the year. The CALIPSO AOD product showed an apparent underestimation of the AOD in different seasons (EE Below = 58.98%), but when the AOD range is small (0 < AOD < 0.1), the CALIPSO data accuracy is higher compared with other satellite products under small AOD range. In the South China Sea, VIIRS has higher data accuracy than MISR, while in the Bohai-Yellow Sea, East China Sea, Sea of Japan, and the western Pacific Ocean, MISR has the best data accuracy. MODIS and VIIRS show similar trends in R, EE within, MB, and RMSE under the influence of AOD, Angstrom exponent (AE), and precipitable water. The study on the temporal and spatial distribution of AOD in the East Asian Ocean shows that the annual variation of AOD is different in different sea areas, and the ocean in the coastal area is greatly affected by land-based pollution. In contrast, the AOD values in the offshore areas are lower, and the aerosol type is mainly clean marine type aerosol. These findings can help researchers in the East Asian Ocean choose the most accurate and reliable satellite AOD data product to better study atmospheric aerosols' impact and trends.

3.
PLoS One ; 15(12): e0244351, 2020.
Article En | MEDLINE | ID: mdl-33382758

The COVID-19 pandemic is currently spreading widely around the world, causing huge threats to public safety and global society. This study analyzes the spatiotemporal pattern of the COVID-19 pandemic in China, reveals China's epicenters of the pandemic through spatial clustering, and delineates the substantial effect of distance to Wuhan on the pandemic spread. The results show that the daily new COVID-19 cases mostly occurred in and around Wuhan before March 6, and then moved to the Grand Bay Area (Shenzhen, Hong Kong and Macau). The total COVID-19 cases in China were mainly distributed in the east of the Huhuanyong Line, where the epicenters accounted for more than 60% of the country's total in/on 24 January and 7 February, half in/on 31 January, and more than 70% from 14 February. The total cases finally stabilized at approximately 84,000, and the inflection point for Wuhan was on 14 February, one week later than those of Hubei (outside Wuhan) and China (outside Hubei). The generalized additive model-based analysis shows that population density and distance to provincial cities were significantly associated with the total number of the cases, while distances to prefecture cities and intercity traffic stations, and population inflow from Wuhan after 24 January, had no strong relationships with the total number of cases. The results and findings should provide valuable insights for understanding the changes in the COVID-19 transmission as well as implications for controlling the global COVID-19 pandemic spread.


COVID-19/epidemiology , COVID-19/transmission , Models, Biological , Pandemics , Cities/epidemiology , Hong Kong/epidemiology , Humans , Macau/epidemiology , Spatial Analysis
...