Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 16(8): 1491-1506, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28572091

RESUMEN

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/metabolismo , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteoma/metabolismo , Proteínas Bacterianas/genética , Pared Celular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteoma/genética , Proteómica , Transducción de Señal
2.
Genomics Proteomics Bioinformatics ; 14(6): 349-356, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27965104

RESUMEN

Coronary artery disease (CAD) is a complex human disease, involving multiple genes and their nonlinear interactions, which often act in a modular fashion. Genome-wide single nucleotide polymorphism (SNP) profiling provides an effective technique to unravel these underlying genetic interplays or their functional involvements for CAD. This study aimed to identify the susceptible pathways and modules for CAD based on SNP omics. First, the Wellcome Trust Case Control Consortium (WTCCC) SNP datasets of CAD and control samples were used to assess the joint effect of multiple genetic variants at the pathway level, using logistic kernel machine regression model. Then, an expanded genetic network was constructed by integrating statistical gene-gene interactions involved in these susceptible pathways with their protein-protein interaction (PPI) knowledge. Finally, risk functional modules were identified by decomposition of the network. Of 276 KEGG pathways analyzed, 6 pathways were found to have a significant effect on CAD. Other than glycerolipid metabolism, glycosaminoglycan biosynthesis, and cardiac muscle contraction pathways, three pathways related to other diseases were also revealed, including Alzheimer's disease, non-alcoholic fatty liver disease, and Huntington's disease. A genetic epistatic network of 95 genes was further constructed using the abovementioned integrative approach. Of 10 functional modules derived from the network, 6 have been annotated to phospholipase C activity and cell adhesion molecule binding, which also have known functional involvement in Alzheimer's disease. These findings indicate an overlap of the underlying molecular mechanisms between CAD and Alzheimer's disease, thus providing new insights into the molecular basis for CAD and its molecular relationships with other diseases.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Redes Reguladoras de Genes/genética , Estudio de Asociación del Genoma Completo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ia , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Bases de Datos Genéticas , Humanos , Desequilibrio de Ligamiento , Modelos Logísticos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Polimorfismo de Nucleótido Simple , Riesgo
3.
Yi Chuan ; 35(12): 1331-9, 2013 Dec.
Artículo en Chino | MEDLINE | ID: mdl-24645342

RESUMEN

The SNP-based association analysis has become one of the most important approaches to interpret the underlying molecular mechanisms for human complex diseases. Nevertheless, the widely-used singe-locus analysis is only capable of capturing a small portion of susceptible SNPs with prominent marginal effects, leaving the important genetic component, epistasis or joint effects, to be undetectable. Identifying the complex interplays among multiple genes in the genome-wide context is an essential task for systematically unraveling the molecular mechanisms for complex diseases. Many approaches have been used to detect genome-wide gene-gene interactions and provided new insights into the genetic basis of complex diseases. This paper reviewed recent advances of the methods for detecting gene-gene interaction, categorized into three types, model-based and model-free statistical methods, and data mining methods, based on their characteristics in theory and numerical algorithm. In particular, the basic principle, numerical implementation and cautions for application for each method were elucidated. In addition, this paper briefly discussed the limitations and challenges associated with detecting genome-wide epistasis, in order to provide some methodological consultancies for scientists in the related fields.


Asunto(s)
Polimorfismo de Nucleótido Simple/genética , Algoritmos , Minería de Datos , Epistasis Genética/genética , Humanos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA