Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Otol Neurotol ; 42(7): e849-e857, 2021 08 01.
Article En | MEDLINE | ID: mdl-33617194

OBJECTIVES: There are no approved pharmacologic therapies for chronic sensorineural hearing loss (SNHL). The combination of CHIR99021+valproic acid (CV, FX-322) has been shown to regenerate mammalian cochlear hair cells ex vivo. The objectives were to characterize the cochlear pharmacokinetic profile of CV in guinea pigs, then measure FX-322 in human perilymph samples, and finally assess safety and audiometric effects of FX-322 in humans with chronic SNHL. STUDY DESIGNS: Middle ear residence, cochlear distribution, and elimination profiles of FX-322 were assessed in guinea pigs. Human perilymph sampling following intratympanic FX-322 dosing was performed in an open-label study in cochlear implant subjects. Unilateral intratympanic FX-322 was assessed in a Phase 1b prospective, randomized, double-blinded, placebo-controlled clinical trial. SETTING: Three private otolaryngology practices in the US. PATIENTS: Individuals diagnosed with mild to moderately severe chronic SNHL (≤70 dB standard pure-tone average) in one or both ears that was stable for ≥6 months, medical histories consistent with noise-induced or idiopathic sudden SNHL, and no significant vestibular symptoms. INTERVENTIONS: Intratympanic FX-322. MAIN OUTCOME MEASURES: Pharmacokinetics of FX-322 in perilymph and safety and audiometric effects. RESULTS: After intratympanic delivery in guinea pigs and humans, FX-322 levels in the cochlear extended high-frequency region were observed and projected to be pharmacologically active in humans. A single dose of FX-322 in SNHL subjects was well tolerated with mild, transient treatment-related adverse events (n = 15 FX-322 vs 8 placebo). Of the six patients treated with FX-322 who had baseline word recognition in quiet scores below 90%, four showed clinically meaningful improvements (absolute word recognition improved 18-42%, exceeding the 95% confidence interval determined by previously published criteria). No significant changes in placebo-injected ears were observed. At the group level, FX-322 subjects outperformed placebo group in word recognition in quiet when averaged across all time points, with a mean improvement from baseline of 18.9% (p = 0.029). For words in noise, the treated group showed a mean 1.3 dB signal-to-noise ratio improvement (p = 0.012) relative to their baseline scores while placebo-treated subjects did not (-0.21 dB, p = 0.71). CONCLUSIONS: Delivery of FX-322 to the extended high-frequency region of the cochlea is well tolerated and enhances speech recognition performance in multiple subjects with stable chronic hearing loss.


Hearing Loss, Sensorineural , Hearing Loss, Sudden , Speech Perception , Animals , Guinea Pigs , Hearing Loss, Sensorineural/drug therapy , Humans , Prospective Studies , Speech Intelligibility , Treatment Outcome
2.
Sci Transl Med ; 4(153): 153ra132, 2012 Sep 26.
Article En | MEDLINE | ID: mdl-23019657

Adherence of proteins, cells, and microorganisms to the surface of venous catheters contributes to catheter occlusion, venous thrombosis, thrombotic embolism, and infections. These complications lengthen hospital stays and increase patient morbidity and mortality. Current technologies for inhibiting these complications are limited in duration of efficacy and may induce adverse side effects. To prevent complications over the life span of a device without using active drugs, we modified a catheter with the nonleaching polymeric sulfobetaine (polySB), which coordinates water molecules to the catheter surface. The modified surface effectively reduced protein, mammalian cell, and microbial attachment in vitro and in vivo. Relative to commercial catheters, polySB-modified catheters exposed to human blood in vitro had a >98% reduction in the attachment and a significant reduction in activation of platelets, lymphocytes, monocytes, and neutrophils. Additionally, the accumulation of thrombotic material on the catheter surface was reduced by >99% even after catheters were exposed to serum in vitro for 60 days. In vivo, in a highly thrombogenic canine model, device- and vessel-associated thrombus was reduced by 99%. In vitro adherence of a broad spectrum of microorganisms was reduced on both the external and the internal surfaces of polySB-modified catheters compared to unmodified catheters. When unmodified and polySB-modified catheters were exposed to the same bacterial challenge and implanted into animals, 50% less inflammation and fewer bacteria were associated with polySB-modified catheters. This nonleaching, polySB-modified catheter could have a major impact on reducing thrombosis and infection, thus improving patient health.


Bacterial Adhesion/drug effects , Betaine/analogs & derivatives , Thrombosis/microbiology , Thrombosis/prevention & control , Vascular Access Devices/adverse effects , Vascular Access Devices/microbiology , Animals , Betaine/pharmacology , Blood Cells/drug effects , Blood Cells/metabolism , Catheterization, Central Venous/adverse effects , Cattle , Cell Adhesion/drug effects , Dogs , Humans , Inflammation/pathology , Surface Properties/drug effects , Time Factors
...