Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Annu Rev Microbiol ; 62: 93-111, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18429691

RESUMEN

The iron-molybdenum cofactor (FeMo-co), located at the active site of the molybdenum nitrogenase, is one of the most complex metal cofactors known to date. During the past several years, an intensive effort has been made to purify the proteins involved in FeMo-co synthesis and incorporation into nitrogenase. This effort is starting to provide insights into the structures of the FeMo-co biosynthetic intermediates and into the biochemical details of FeMo-co synthesis.


Asunto(s)
Bacterias/metabolismo , Molibdoferredoxina/biosíntesis , Nitrogenasa/biosíntesis , Secuencia de Aminoácidos , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Genes Bacterianos , Modelos Biológicos , Modelos Moleculares , Molibdeno/metabolismo , Molibdoferredoxina/química , Molibdoferredoxina/genética , Familia de Multigenes , Fijación del Nitrógeno/genética , Fijación del Nitrógeno/fisiología , Nitrogenasa/química , Nitrogenasa/genética , Estructura Cuaternaria de Proteína , Homología de Secuencia de Aminoácido
2.
J Am Chem Soc ; 130(17): 5673-80, 2008 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-18386899

RESUMEN

NifB-co, an Fe-S cluster produced by the enzyme NifB, is an intermediate on the biosynthetic pathway to the iron molybdenum cofactor (FeMo-co) of nitrogenase. We have used Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy together with (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to probe the structure of NifB-co while bound to the NifX protein from Azotobacter vinelandii. The spectra have been interpreted in part by comparison with data for the completed FeMo-co attached to the NafY carrier protein: the NafY:FeMo-co complex. EXAFS analysis of the NifX:NifB-co complex yields an average Fe-S distance of 2.26 A and average Fe-Fe distances of 2.66 and 3.74 A. Search profile analyses reveal the presence of a single Fe-X (X = C, N, or O) interaction at 2.04 A, compared to a 2.00 A Fe-X interaction found in the NafY:FeMo-co EXAFS. This suggests that the interstitial light atom (X) proposed to be present in FeMo-co has already inserted at the NifB-co stage of biosynthesis. The NRVS exhibits strong bands from Fe-S stretching modes peaking around 270, 315, 385, and 408 cm(-1). Additional intensity at approximately 185-200 cm(-1) is interpreted as a set of cluster "breathing" modes similar to those seen for the FeMo-cofactor. The strength and location of these modes also suggest that the FeMo-co interstitial light atom seen in the crystal structure is already in place in NifB-co. Both the EXAFS and NRVS data for NifX:NifB-co are best simulated using a Fe 6S 9X trigonal prism structure analogous to the 6Fe core of FeMo-co, although a 7Fe structure made by capping one trigonal 3S terminus with Fe cannot be ruled out. The results are consistent with the conclusion that the interstitial light atom is already present at an early stage in FeMo-co biosynthesis prior to the incorporation of Mo and R-homocitrate.


Asunto(s)
Compuestos de Hierro/química , Molibdoferredoxina/química , Rayos X , Absorción , Carbono/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Compuestos de Hierro/metabolismo , Estructura Molecular , Molibdoferredoxina/metabolismo , Nitrógeno/química , Oxígeno/química
3.
Mol Microbiol ; 63(1): 177-92, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17163967

RESUMEN

The iron-molybdenum cofactor of nitrogenase (FeMo-co) is synthesized in a multistep process catalysed by several Nif proteins and is finally inserted into a pre-synthesized apo-dinitrogenase to generate mature dinitrogenase protein. The NifEN complex serves as scaffold for some steps of this synthesis, while NifX belongs to a family of small proteins that bind either FeMo-co precursors or FeMo-co during cofactor synthesis. In this work, the binding of FeMo-co precursors and their transfer between purified Azotobacter vinelandii NifX and NifEN proteins was studied to shed light on the role of NifX on FeMo-co synthesis. Purified NifX binds NifB cofactor (NifB-co), a precursor to FeMo-co, with high affinity and is able to transfer it to the NifEN complex. In addition, NifEN and NifX exchange another [Fe-S] cluster that serves as a FeMo-co precursor, and we have designated it as the VK-cluster. In contrast to NifB-co, the VK-cluster is electronic paramagnetic resonance (EPR)-active in the reduced and the oxidized states. The NifX/VK-cluster complex is unable to support in vitro FeMo-co synthesis in the absence of NifEN because further processing of the VK-cluster into FeMo-co requires the simultaneous activities of NifEN and NifH. Our in vitro studies suggest that the role of NifX in vivo is to serve as transient reservoir of FeMo-co precursors and thus help control their flux during FeMo-co synthesis.


Asunto(s)
Azotobacter vinelandii/enzimología , Proteínas Bacterianas/metabolismo , Compuestos de Hierro/metabolismo , Molibdoferredoxina/biosíntesis , Fijación del Nitrógeno/genética , Azotobacter vinelandii/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Vías Biosintéticas , Genes Bacterianos , Molibdoferredoxina/química
4.
Biochim Biophys Acta ; 1757(12): 1582-91, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17123462

RESUMEN

Upon exposure to CO during anaerobic growth, the purple phototrophic bacterium Rhodospirillum rubrum expresses a CO-oxidizing H(2) evolving enzymatic system. The CO-oxidizing enzyme, carbon monoxide dehydrogenase (CODH), has been purified and extensively characterized. However the electron transfer pathway from CODH to the CO-induced hydrogenase that evolves H(2) is not well understood. CooF is an Fe-S protein that is the proposed mediator of electron transfer between CODH and the CO-induced hydrogenase. Here we present the spectroscopic and biochemical properties of the CODH:CooF complex. The characteristic EPR signals observed for CODH are largely insensitive to CooF complexation. Metal analysis and EPR spectroscopy show that CooF contains 2 Fe(4)S(4) clusters. The observation of 2 Fe(4)S(4) clusters for CooF contradicts the prediction of 4 Fe(4)S(4) clusters based on analysis of the amino acid sequence of CooF and structural studies of CooF homologs. Comparison of in vivo and in vitro CO-dependent H(2) evolution indicates that approximately 90% of the activity is lost upon cell lysis. We propose that the loss of two labile Fe-S clusters from CooF during cell lysis may be responsible for the low in vitro CO-dependent H(2) evolution activity. During the course of these studies, a new assay for CODH:CooF was developed using membranes from an R. rubrum mutant that did not express CODH:CooF, but expressed high levels of the CO-induced hydrogenase. The assay revealed that the CO-induced hydrogenase requires the presence of CODH:CooF for optimal H(2) evolution activity.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Proteínas Bacterianas/metabolismo , Monóxido de Carbono/metabolismo , Hidrógeno/metabolismo , Complejos Multienzimáticos/metabolismo , Rhodospirillum rubrum/metabolismo , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Espectroscopía de Resonancia por Spin del Electrón , Genes Bacterianos , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Complejos Multiproteicos , Subunidades de Proteína , Regulón , Rhodospirillum rubrum/genética
5.
Proc Natl Acad Sci U S A ; 103(14): 5297-301, 2006 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-16567617

RESUMEN

Biological nitrogen fixation, an essential process of the biogeochemical nitrogen cycle that supports life on Earth, is catalyzed by the nitrogenase enzyme. The nitrogenase active site contains an iron and molybdenum cofactor (FeMo-co) composed of 7Fe-9S-Mo-homocitrate and one not-yet-identified atom, which probably is the most complex [Fe-S] cluster in nature. Here, we show the in vitro synthesis of FeMo-co from its simple constituents, Fe, S, Mo, and homocitrate. The in vitro FeMo-co synthesis requires purified NifB and depends on S-adenosylmethionine, indicating that radical chemistry is required during FeMo-co assembly.


Asunto(s)
Proteínas Bacterianas/fisiología , Molibdoferredoxina/biosíntesis , Azotobacter vinelandii/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Sistema Libre de Células , Cromatografía de Afinidad , Cromatografía por Intercambio Iónico , Electroforesis en Gel de Poliacrilamida , Genes Bacterianos , Inmunoprecipitación
6.
J Biol Inorg Chem ; 10(8): 903-12, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16283394

RESUMEN

Carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum catalyzes the oxidation of CO to CO2. A unique [NiFe4S4] cluster, known as the C-cluster, constitutes the active site of the enzyme. When grown in Ni-deficient medium R. rubrum accumulates a Ni-deficient apo form of CODH that is readily activated by Ni. It has been previously shown that activation of apo-CODH by Ni is a two-step process involving the rapid formation of an inactive apo-CODH*Ni complex prior to conversion to the active holo-CODH. We have generated CODH variants with substitutions in cysteine residues involved in the coordination of the [Fe3S4] portion of the C-cluster. Analysis of the variants suggests that the cysteine residues at positions 338, 451, and 481 are important for CO oxidation activity catalyzed by CODH but not for Ni binding to the C-cluster. C451S CODH is the only new variant that retains residual CO oxidation activity. Comparison of the kinetics and pH dependence of Ni activation of the apo forms of wild-type, C451S, and C531A CODH allowed us to develop a model for Ni insertion into the C-cluster of CODH in which Ni reversibly binds to the C-cluster and subsequently coordinates Cys531 in the rate-determining step.


Asunto(s)
Aldehído Oxidorreductasas/química , Complejos Multienzimáticos/química , Níquel/química , Rhodospirillum rubrum/enzimología , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Sustitución de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Sitios de Unión , Monóxido de Carbono/metabolismo , Cisteína/química , Cisteína/genética , Activación Enzimática , Concentración de Iones de Hidrógeno , Hierro/química , Cinética , Ligandos , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutación , Sulfuros/química
7.
FEBS Lett ; 579(25): 5751-8, 2005 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-16225869

RESUMEN

Nitrogenase activity in the photosynthetic bacterium Rhodospirillum rubrum is reversibly regulated by ADP-ribosylation of a specific arginine residue of dinitrogenase reductase based on the cellular nitrogen or energy status. In this paper, we have investigated the ability of nicotinamide adenine dinucleotide, NAD (the physiological ADP-ribose donor), and its analogs to support covalent modification of dinitrogenase reductase in vitro. R. rubrum dinitrogenase reductase can be modified by DRAT in the presence of 2 mM NAD, but not with 2 mM nicotinamide mononucleotide (NMN) or nicotinamide adenine dinucleotide phosphate (NADP). We also found that the apo- and the all-ferrous forms of R. rubrum dinitrogenase reductase are not substrates for covalent modification. In contrast, Azotobacter vinelandii dinitrogenase reductase can be modified by the dinitrogenase reductase ADP-ribosyl transferase (DRAT) in vitro in the presence of either 2 mM NAD, NMN or NADP as nucleotide donors. We found that: (1) a simple ribose sugar in the modification site of the A. vinelandii dinitrogenase reductase is sufficient to inactivate the enzyme, (2) phosphoADP-ribose is the modifying unit in the NADP-modified enzyme, and (3) the NMN-modified enzyme carries two ribose-phosphate units in one modification site. This is the first report of NADP- or NMN-dependent modification of a target protein by an ADP-ribosyl transferase.


Asunto(s)
Azotobacter vinelandii/enzimología , Dinitrogenasa Reductasa/metabolismo , Rhodospirillum rubrum/enzimología , Ribonucleótidos/farmacología , Adenosina Difosfato Ribosa/química , Dinitrogenasa Reductasa/química , Dinitrogenasa Reductasa/efectos de los fármacos , NAD/química , NAD/farmacología , NADP/química , NADP/farmacología , Mononucleótido de Nicotinamida/química , Mononucleótido de Nicotinamida/farmacología , Ribonucleótidos/química
8.
Proc Natl Acad Sci U S A ; 102(18): 6291-6, 2005 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-15845763

RESUMEN

Rnf proteins are proposed to form membrane-protein complexes involved in the reduction of target proteins such as the transcriptional regulator SoxR or the dinitrogenase reductase component of nitrogenase. In this work, we investigate the role of rnf genes in the nitrogen-fixing bacterium Azotobacter vinelandii. We show that A. vinelandii has two clusters of rnf-like genes: rnf1, whose expression is nif-regulated, and rnf2, which is expressed independently of the nitrogen source in the medium. Deletion of each of these gene clusters produces a time delay in nitrogen-fixing capacity and, consequently, in diazotrophic growth. Deltarnf mutations cause two distinguishable effects on the nitrogenase system: (i), slower nifHDK gene expression and (ii), impairment of nitrogenase function. In these mutants, dinitrogenase reductase activity is lowered, whereas dinitrogenase activity remains essentially unaltered. Further analysis indicates that deltarnf mutants accumulate an inactive and iron-deficient form of NifH because they have lower rates of incorporation of [4Fe-4S] into NifH. Deltarnf mutations also cause a noticeable decrease in aconitase activity; however, they do not produce general oxidative stress or modification of Fe metabolism in A. vinelandii. Our results suggest the existence of a redox regulatory mechanism in A. vinelandii that controls the rate of expression and maturation of nitrogenase by the activity of the Rnf protein complexes. rnf1 plays a major and more specific role in this scheme, but the additive effects of mutations in rnf1 and rnf2 indicate the existence of functional complementation between the two homologous systems.


Asunto(s)
Azotobacter vinelandii/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Fijación del Nitrógeno/genética , Nitrogenasa/metabolismo , Azotobacter vinelandii/enzimología , Azotobacter vinelandii/crecimiento & desarrollo , Dinitrogenasa Reductasa/metabolismo , Electroforesis en Gel de Poliacrilamida , Componentes del Gen , Radioisótopos de Hierro , Nitrogenasa/genética
10.
J Biol Chem ; 279(19): 19739-46, 2004 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-14996831

RESUMEN

The formation of an active dinitrogenase requires the synthesis and the insertion of the iron-molybdenum cofactor (FeMo-co) into a presynthesized apodinitrogenase. In Azotobacter vinelandii, NafY (also known as gamma protein) has been proposed to be a FeMo-co insertase because of its ability to bind FeMo-co and apodinitrogenase. Here we report the purification and biochemical characterization of NafY and reach the following conclusions. First, NafY is a 26-kDa monomeric protein that binds one molecule of FeMo-co with very high affinity (K(d) approximately equal to 60 nm); second, the NafY-FeMo-co complex exhibits a S = 3/2 EPR signal with features similar to the signals for extracted FeMo-co and the M center of dinitrogenase; third, site-directed mutagenesis of nafY indicates that the His(121) residue of NafY is involved in cofactor binding; and fourth, NafY binding to apodinitrogenase or to FeMo-co does not require the presence of any additional protein. In addition, we have obtained evidence that suggests the ability of NafY to bind NifB-co, an FeS cluster of unknown structure that is a biosynthetic precursor to FeMo-co.


Asunto(s)
Azotobacter vinelandii/enzimología , Nitrogenasa/química , Nitrogenasa/aislamiento & purificación , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Cromatografía , Cromatografía en Gel , Relación Dosis-Respuesta a Droga , Espectroscopía de Resonancia por Spin del Electrón , Electroforesis en Gel de Poliacrilamida , Glutatión Transferasa/metabolismo , Immunoblotting , Proteínas Hierro-Azufre/química , Cinética , Datos de Secuencia Molecular , Molibdoferredoxina/química , Mutagénesis Sitio-Dirigida , Distribución Normal , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
11.
J Biol Chem ; 278(34): 32150-6, 2003 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-12754195

RESUMEN

The Azotobacter vinelandii NafY protein (nitrogenase accessory factor Y) is able to bind either to the iron molybdenum cofactor (FeMo-co) or to apodinitrogenase and is believed to facilitate the transfer of FeMo-co into apodinitrogenase. The NafY protein has two domains: an N-terminal domain (residues Met1-Leu98) and a C-terminal domain (residues Glu99-Ser232), referred here to as the "core domain." The core domain of NafY is shown here to be capable of binding the FeMo cofactor of nitrogenase but unable to bind to apodinitrogenase in the absence of the first domain. The three-dimensional molecular structure of the core domain of NafY has been solved to 1.8-A resolution, revealing that the protein consists of a mixed five-stranded beta-sheet flanked by five alpha-helices that belongs to the ribonuclease H superfamily. As such, this represents a new fold capable of binding FeMo-co, where the only previous example was that seen in dinitrogenase.


Asunto(s)
Azotobacter vinelandii/química , Proteínas Bacterianas/química , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido
12.
J Bacteriol ; 185(7): 2383-6, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12644512

RESUMEN

A gene from Azotobacter vinelandii whose product exhibits primary sequence similarity to the NifY, NafY, NifX, and VnfX family of proteins, and which is required for effective V-dependent diazotrophic growth, was identified. Because this gene is located downstream from vnfK in an arrangement similar to the relative organization of the nifK and nifY genes, it was designated vnfY. A mutant strain having an insertion mutation in vnfY has 10-fold less vnf dinitrogenase activity and exhibits a greatly diminished level of (49)V label incorporation into the V-dependent dinitrogenase when compared to the wild type. These results indicate that VnfY has a role in the maturation of the V-dependent dinitrogenase, with a specific role in the formation of the V-containing cofactor and/or its insertion into apodinitrogenase.


Asunto(s)
Azotobacter vinelandii/enzimología , Azotobacter vinelandii/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Nitrogenasa/metabolismo , Vanadio/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Dinitrogenasa Reductasa/genética , Dinitrogenasa Reductasa/metabolismo , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Nitrogenasa/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
13.
J Bacteriol ; 184(21): 5894-7, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12374822

RESUMEN

Substitution of one amino acid for another at the active site of an enzyme usually diminishes or eliminates the activity of the enzyme. In some cases, however, the specificity of the enzyme is changed. In this study, we report that the changing of a metal ligand at the active site of the NiFeS-containing carbon monoxide dehydrogenase (CODH) converts the enzyme to a hydrogenase or a hydroxylamine reductase. CODH with alanine substituted for Cys(531) exhibits substantial uptake hydrogenase activity, and this activity is enhanced by treatment with CO. CODH with valine substituted for His(265) exhibits hydroxylamine reductase activity. Both Cys(531) and His(265) are ligands to the active-site cluster of CODH. Further, CODH with Fe substituted for Ni at the active site acquires hydroxylamine reductase activity.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Complejos Multienzimáticos/metabolismo , Oxidorreductasas/metabolismo , Rhodospirillum rubrum/enzimología , Acetileno , Aldehído Oxidorreductasas/genética , Proteínas Bacterianas/metabolismo , Cianuros , Hidrogenasas/genética , Complejos Multienzimáticos/genética , Oxidorreductasas/genética , Rhodospirillum rubrum/genética
14.
J Bacteriol ; 184(21): 5898-902, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12374823

RESUMEN

The hybrid cluster protein (HCP; formerly termed the prismane protein) has been extensively studied due to its unique spectroscopic properties. Although the structural and spectroscopic characteristics are well defined, its enzymatic function, up to this point, has remained unidentified. While it was proposed that HCP acts in some step of nitrogen metabolism, a specific role for this enzyme remained unknown. Recent studies of HCP purified from Escherichia coli have identified a novel hydroxylamine reductase activity. These data reveal the ability of HCP to reduce hydroxylamine in vitro to form NH(3) and H(2)O. Further biochemical analyses were completed in order to determine the effects of various electron donors, different pH levels, and the presence of CN(-) on in vitro hydroxylamine reduction.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/enzimología , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas/metabolismo , Absorción , Monóxido de Carbono , Cianuros , Hidroxilamina/metabolismo , Oxígeno , Espectrometría de Fluorescencia/métodos
15.
J Biol Chem ; 277(42): 40106-11, 2002 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-12176981

RESUMEN

The biosynthesis of the iron-molybdenum cofactor (FeMo-co) of nitrogenase was investigated using the purified in vitro FeMo-co synthesis system and 99Mo. The purified system involves the addition of all components that are known to be required for FeMo-co synthesis in their purified forms. Here, we report the accumulation of a 99Mo-containing FeMo-co precursor on NifNE. Apart from NifNE, NifH and NifX also accumulate 99Mo label. We present evidence that suggests NifH may serve as the entry point for molybdenum incorporation into the FeMo-co biosynthetic pathway. We also present evidence suggesting a role for NifX in specifying the organic acid moiety of FeMo-co.


Asunto(s)
Azotobacter vinelandii/enzimología , Proteínas Bacterianas/química , Proteínas Portadoras/química , Hierro/química , Molibdeno/química , Nitrogenasa/química , Oxidorreductasas/química , Radioisótopos/química , Adenosina Trifosfato/metabolismo , Electroforesis en Gel de Poliacrilamida , Immunoblotting , Nitrogenasa/metabolismo , Unión Proteica , Estructura Terciaria de Proteína
16.
J Biol Chem ; 277(16): 14299-305, 2002 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-11823455

RESUMEN

Dinitrogenase is a heterotetrameric (alpha(2)beta(2)) enzyme that catalyzes the reduction of dinitrogen to ammonium and contains the iron-molybdenum cofactor (FeMo-co) at its active site. Certain Azotobacter vinelandii mutant strains unable to synthesize FeMo-co accumulate an apo form of dinitrogenase (lacking FeMo-co), with a subunit composition alpha(2)beta(2)gamma(2), which can be activated in vitro by the addition of FeMo-co. The gamma protein is able to bind FeMo-co or apodinitrogenase independently, leading to the suggestion that it facilitates FeMo-co insertion into the apoenzyme. In this work, the non-nif gene encoding the gamma subunit (nafY) has been cloned, sequenced, and found to encode a NifY-like protein. This finding, together with a wealth of knowledge on the biochemistry of proteins involved in FeMo-co and FeV-co biosyntheses, allows us to define a new family of iron and molybdenum (or vanadium) cluster-binding proteins that includes NifY, NifX, VnfX, and now gamma. In vitro FeMo-co insertion experiments presented in this work demonstrate that gamma stabilizes apodinitrogenase in the conformation required to be fully activable by the cofactor. Supporting this conclusion, we show that strains containing mutations in both nafY and nifX are severely affected in diazotrophic growth and extractable dinitrogenase activity when cultured under conditions that are likely to occur in natural environments. This finding reveals the physiological importance of the apodinitrogenase-stabilizing role of which both proteins are capable. The relationship between the metal cluster binding capabilities of this new family of proteins and the ability of some of them to stabilize an apoenzyme is still an open matter.


Asunto(s)
Azotobacter vinelandii/genética , Proteínas Portadoras/genética , Metaloproteínas/genética , Secuencia de Aminoácidos , Azotobacter vinelandii/metabolismo , Proteínas Portadoras/metabolismo , Clonación Molecular , Análisis Mutacional de ADN , Electroforesis en Gel de Poliacrilamida , Immunoblotting , Metaloproteínas/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Factores de Tiempo
17.
Biochemistry ; 41(5): 1681-8, 2002 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-11814363

RESUMEN

Carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum utilizes three types of Fe-S clusters to catalyze the reversible oxidation of CO to CO(2): a novel [Ni4Fe5S] active site (C cluster) and two distinct [4Fe4S] electron-transfer sites (B and D clusters). While recent X-ray data show the geometric arrangement of the five metal centers at the C cluster, electronic structures of the various [Ni4Fe5S] oxidation states remain ambiguous. These studies report magnetic circular dichroism (MCD), variable temperature, variable field MCD (VTVH MCD), and resonance Raman (rR) spectroscopic properties of the Fe-S clusters contained in Ni-deficient CODH. Essentially homogeneous sample preparations aided in the resolution of the reduced [4Fe4S](1+) (S = (1)/(2)) B cluster and the reduced Ni-deficient C cluster (denoted C, S > (1)/(2)) by MCD. The three Fe atoms derived from the [Ni3Fe4S] cubane component appear to dominate the reduced C cluster MCD spectrum, while the presence of a fourth Fe center can be inferred from the ground state spin. The same underlying MCD features present in Ni-deficient CODH spectra are also observed for Ni-containing CODH, suggesting that both proteins contain the same C cluster Fe-S component. Overlooked in all spectroscopic studies to date, the D cluster was confirmed by rR to be a typical [4Fe4S] site with cysteinyl coordination. Together, MCD and rR data show that the D cluster remains in the oxidized [4Fe4S](2+) (S = 0) state at potentials > or = -530 mV (versus SHE), thus exhibiting an unusually low redox potential for a standard [4Fe4S](2+/1+) electron-transfer site.


Asunto(s)
Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Níquel/metabolismo , Rhodospirillum rubrum/enzimología , Dicroismo Circular , Espectroscopía de Resonancia por Spin del Electrón , Estabilidad de Enzimas , Oxidación-Reducción , Espectrofotometría , Temperatura
18.
Photosynth Res ; 73(1-3): 115-8, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-16245111

RESUMEN

In 1949, Howard Gest and Martin Kamen published two brief papers in Science that changed our perceptions about the metabolic capabilities of photosynthetic bacteria. Their discovery of photoproduction of hydrogen and the ability of Rhodospirillum rubrum to fix nitrogen led to a greater understanding of both processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...