Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 40(46): 13906-14, 2001 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-11705380

RESUMEN

Sensory rhodopsin II (SRII) is unique among the archaeal rhodopsins in having an absorption maximum near 500 nm, blue shifted roughly 70 nm from the other pigments. In addition, SRII displays vibronic structure in the lambda(max) absorption band, whereas the other pigments display fully broadened band maxima. The molecular origins responsible for both photophysical properties are examined here with reference to the 2.4 A crystal structure of sensory rhodopsin II (NpSRII) from Natronobacterium pharaonis. We use semiempirical molecular orbital theory (MOZYME) to optimize the chromophore within the chromophore binding site, and MNDO-PSDCI molecular orbital theory to calculate the spectroscopic properties. The entire first shell of the chromophore binding site is included in the MNDO-PSDCI SCF calculation, and full single and double configuration interaction is included for the chromophore pi-system. Through a comparison of corresponding calculations on the 1.55 A crystal structure of bacteriorhodopsin (bR), we identify the principal molecular mechanisms, and residues, responsible for the spectral blue shift in NpSRII. We conclude that the major source of the blue shift is associated with the significantly different positions of Arg-72 (Arg-82 in bR) in the two proteins. In NpSRII, this side chain has moved away from the chromophore Schiff base nitrogen and closer to the beta-ionylidene ring. This shift in position transfers this positively charged residue from a region of chromophore destabilization in bR to a region of chromophore stabilization in NpSRII, and is responsible for roughly half of the blue shift. Other important contributors include Asp-201, Thr-204, Tyr-174, Trp-76, and W402, the water molecule hydrogen bonded to the Schiff base proton. The W402 contribution, however, is a secondary effect that can be traced to the transposition of Arg-72. Indeed, secondary interactions among the residues contribute significantly to the properties of the binding site. We attribute the increased vibronic structure in NpSRII to the loss of Arg-72 dynamic inhomogeneity, and an increase in the intensity of the second excited (1)A(g)(-) -like state, which now appears as a separate feature within the lambda(max) band profile. The strongly allowed (1)B(u)(+)-like state and the higher-energy (1)A(g)(-) -like state are highly mixed in NpSRII, and the latter state borrows intensity from the former to achieve an observable oscillator strength.


Asunto(s)
Proteínas Arqueales/química , Carotenoides/química , Halorrodopsinas , Rodopsinas Sensoriales , Sustitución de Aminoácidos , Cromatóforos Bacterianos/química , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Transferencia de Energía , Modelos Químicos , Natronobacterium/química , Protones , Bases de Schiff/química , Espectrofotometría , Electricidad Estática
2.
J Mol Biol ; 313(3): 615-28, 2001 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-11676543

RESUMEN

Crystal structures are reported for the D85S and D85S/F219L mutants of the light-driven proton/hydroxyl-pump bacteriorhodopsin. These mutants crystallize in the orthorhombic C222(1) spacegroup, and provide the first demonstration that monoolein-based cubic lipid phase crystallization can support the growth of well-diffracting crystals in non-hexagonal spacegroups. Both structures exhibit similar and substantial differences relative to wild-type bacteriorhodopsin, suggesting that they represent inherent features resulting from neutralization of the Schiff base counterion Asp85. We argue that these structures provide a model for the last photocycle intermediate (O) of bacteriorhodopsin, in which Asp85 is protonated, the proton release group is deprotonated, and the retinal has reisomerized to all-trans. Unlike for the M and N photointermediates, where structural changes occur mainly on the cytoplasmic side, here the large-scale changes are confined to the extracellular side. As in the M intermediate, the side-chain of Arg82 is in a downward configuration, and in addition, a pi-cloud hydrogen bond forms between Trp189 NE1 and Trp138. On the cytoplasmic side, there is increased hydration near the surface, suggesting how Asp96 might communicate with the bulk during the rise of the O intermediate.


Asunto(s)
Sustitución de Aminoácidos/genética , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Halobacterium/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriorodopsinas/genética , Sitios de Unión , Cristalografía por Rayos X , Citoplasma/química , Citoplasma/metabolismo , Halobacterium/genética , Enlace de Hidrógeno , Isomerismo , Modelos Moleculares , Estructura Secundaria de Proteína , Retinaldehído/química , Retinaldehído/metabolismo , Bases de Schiff/metabolismo
3.
J Mol Biol ; 312(1): 203-19, 2001 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-11545597

RESUMEN

Calculations of protonation states and pK(a) values for the ionizable groups in the resting state of bacteriorhodopsin have been carried out using the recently available 1.55 A resolution X-ray crystallographic structure. The calculations are in reasonable agreement with the available experimental data for groups on or near the ion transport chain (the retinal Schiff base; Asp85, 96, 115, 212, and Arg82). In contrast to earlier studies using lower-resolution structural data, this agreement is achieved without manipulations of the crystallographically determined heavy-atom positions or ad hoc adjustments of the intrinsic pK(a) of the Schiff base. Thus, the theoretical methods used provide increased reliability as the input structural data are improved. Only minor effects on the agreement with experiment are found with respect to methodological variations, such as single versus multi-conformational treatment of hydrogen atom placements, or retaining the crystallographically determined internal water molecules versus treating them as high-dielectric cavities. The long-standing question of the identity of the group that releases a proton to the extracellular side of the membrane during the L-to-M transition of the photocycle is addressed by including as pH-titratable sites not only Glu204 and Glu194, residues near the extracellular side that have been proposed as the release group, but also an H(5)O(2)(+) molecule in a nearby cavity. The latter represents the recently proposed storage of the release proton in an hydrogen-bonded water network. In all calculations where this possibility is included, the proton is stored in the H(5)O(2)(+) rather than on either of the glutamic acids, thus establishing the plausibility on theoretical grounds of the storage of the release proton in bacteriorhodopsin in a hydrogen-bonded water network. The methods used here may also be applicable to other proteins that may store a proton in this way, such as the photosynthetic reaction center and cytochrome c oxidase.


Asunto(s)
Bacteriorodopsinas/química , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Conformación Proteica , Protones , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática , Agua
4.
Curr Opin Struct Biol ; 11(4): 415-9, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11495732

RESUMEN

High-resolution maps from X-ray diffraction of bacteriorhodopsin and some of its photointermediates have yielded insights into how the isomerization of the bound retinal drives ion transport. Although important mechanistic details are still undecided, the events of the photochemical cycle are now understood to reflect changes in specific hydrogen bonds of protein groups and bound water molecules in response to motions of the retinal chain.


Asunto(s)
Bacteriorodopsinas/química , Bacteriorodopsinas/fisiología , Transporte Iónico/fisiología , Bombas de Protones/fisiología , Membrana Púrpura/química , Bacteriorodopsinas/metabolismo , Isomerismo , Luz , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Estructurales , Conformación Proteica , Retinaldehído/química , Agua/fisiología , Difracción de Rayos X
5.
Science ; 293(5534): 1499-503, 2001 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-11452084

RESUMEN

We report an atomic-resolution structure for a sensory member of the microbial rhodopsin family, the phototaxis receptor sensory rhodopsin II (NpSRII), which mediates blue-light avoidance by the haloarchaeon Natronobacterium pharaonis. The 2.4 angstrom structure reveals features responsible for the 70- to 80-nanometer blue shift of its absorption maximum relative to those of haloarchaeal transport rhodopsins, as well as structural differences due to its sensory, as opposed to transport, function. Multiple factors appear to account for the spectral tuning difference with respect to bacteriorhodopsin: (i) repositioning of the guanidinium group of arginine 72, a residue that interacts with the counterion to the retinylidene protonated Schiff base; (ii) rearrangement of the protein near the retinal ring; and (iii) changes in tilt and slant of the retinal polyene chain. Inspection of the surface topography reveals an exposed polar residue, tyrosine 199, not present in bacteriorhodopsin, in the middle of the membrane bilayer. We propose that this residue interacts with the adjacent helices of the cognate NpSRII transducer NpHtrII.


Asunto(s)
Bacteriorodopsinas/química , Carotenoides , Natronobacterium/química , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Arginina/química , Bacteriorodopsinas/metabolismo , Sitios de Unión , Color , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Enlace de Hidrógeno , Transporte Iónico , Luz , Modelos Moleculares , Natronobacterium/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína , Protones , Retinaldehído/química , Retinaldehído/metabolismo , Bases de Schiff , Transducción de Señal , Tirosina/química
6.
J Mol Biol ; 306(3): 489-98, 2001 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-11178908

RESUMEN

Annexins comprise a multigene family of Ca2+ and phospholipid- binding proteins. They consist of a conserved C-terminal or core domain that confers Ca2+-dependent phospholipid binding and an N-terminal domain that is variable in sequence and length and responsible for the specific properties of each annexin. Crystal structures of various annexin core domains have revealed a high degree of similarity. From these and other studies it is evident that the core domain harbors the calcium-binding sites that interact with the phospholipid headgroups. However, no structure has been reported of an annexin with a complete N-terminal domain. We have now solved the crystal structure of such a full-length annexin, annexin 1. Annexin 1 is active in membrane aggregation and its refined 1.8 A structure shows an alpha-helical N-terminal domain connected to the core domain by a flexible linker. It is surprising that the two alpha-helices present in the N-terminal domain of 41 residues interact intimately with the core domain, with the amphipathic helix 2-12 of the N-terminal domain replacing helix D of repeat III of the core. In turn, helix D is unwound into a flap now partially covering the N-terminal helix. Implications for membrane aggregation will be discussed and a model of aggregation based on the structure will be presented.


Asunto(s)
Anexina A1/química , Anexina A1/metabolismo , Membrana Celular/metabolismo , Porcinos , Animales , Sitios de Unión , Calcio/metabolismo , Cristalografía por Rayos X , Dimerización , Disulfuros/metabolismo , Modelos Biológicos , Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Secuencias Repetitivas de Aminoácido , Relación Estructura-Actividad
7.
Acta Crystallogr D Biol Crystallogr ; 56(Pt 11): 1459-61, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11053851

RESUMEN

Annexin I, a member of the annexin family of Ca(2+)- and phospholipid-binding proteins, has been crystallized with the complete N-terminus. Annexins are structurally divided into a conserved protein core and an N-terminal domain that is variable in sequence and length. Three-dimensional structures of annexins comprising the protein core and a short N-terminal domain (annexins III, IV, V, VI, XII) or a truncated form almost completely lacking the N-terminal domain (annexins I and II) have been published so far. Here, the crystallization of annexin I comprising not only the core but also the complete N-terminal domain is reported. The crystals belong to the space group P2(1)2(1)2(1), with unit-cell parameters a = 63.6, b = 96.3, c = 127.4 A, and diffract to better than 2 A. Assuming a molecular weight of 38.7 kDa for annexin I and an average value of 2.5 A(3) Da(-1) for V(M), two molecules per asymmetric unit are present.


Asunto(s)
Anexina A1/química , Cristalización , Cristalografía por Rayos X , Conformación Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
Biochim Biophys Acta ; 1460(1): 133-56, 2000 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-10984596

RESUMEN

High-resolution X-ray crystallographic studies of bacteriorhodopsin have tremendously advanced our understanding of this light-driven ion pump during the last 2 years, and emphasized the crucial role of discrete internal water molecules in the pump cycle. In the extracellular region an extensive three-dimensional hydrogen-bonded network of protein residues and seven water molecules leads from the buried retinal Schiff base via water 402 and the initial proton acceptor Asp85 to the membrane surface. Near Lys216 where the retinal binds, transmembrane helix G contains a pi-bulge that causes a non-proline kink. The bulge is stabilized by hydrogen bonding of the main chain carbonyl groups of Ala215 and Lys216 with two buried water molecules located in the otherwise very hydrophobic region between the Schiff base and the proton donor Asp96 in the cytoplasmic region. The M intermediate trapped in the D96N mutant corresponds to a late M state in the transport cycle, after protonation of Asp85 and release of a proton to the extracellular membrane surface, but before reprotonation of the deprotonated retinal Schiff base. The M intermediate from the E204Q mutant corresponds to an earlier M, as in this mutant the Schiff base deprotonates without proton release. The structures of these two M states reveal progressive displacements of the retinal, main chain and side chains induced by photoisomerization of the retinal to 13-cis,15-anti, and an extensive rearrangement of the three-dimensional network of hydrogen-bonded residues and bound water that accounts for the changed pK(a)s of the Schiff base, Asp85, the proton release group and Asp96. The structure for the M state from E204Q suggests, moreover, that relaxation of the steric conflicts of the distorted 13-cis,15-anti retinal plays a critical role in the reprotonation of the Schiff base by Asp96. Two additional waters now connect Asp96 to the carbonyl of residue 216, in what appears to be the beginning of a hydrogen-bonded chain that would later extend to the retinal Schiff base. Based on the ground state and M intermediate structures, models of the molecular events in the early part of the photocycle are presented, including a novel model which proposes that bacteriorhodopsin pumps hydroxide (OH(-)) ions from the extracellular to the cytoplasmic side.


Asunto(s)
Bacteriorodopsinas/química , Bombas Iónicas/química , Luz , Agua/química , Sitios de Unión , Modelos Moleculares , Estructura Molecular , Fotoquímica , Conformación Proteica , Retinaldehído/química , Bases de Schiff/química , Relación Estructura-Actividad
9.
J Mol Biol ; 300(5): 1237-55, 2000 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-10903866

RESUMEN

In order to understand how isomerization of the retinal drives unidirectional transmembrane ion transport in bacteriorhodopsin, we determined the atomic structures of the BR state and M photointermediate of the E204Q mutant, to 1.7 and 1.8 A resolution, respectively. Comparison of this M, in which proton release to the extracellular surface is blocked, with the previously determined M in the D96N mutant indicates that the changes in the extracellular region are initiated by changes in the electrostatic interactions of the retinal Schiff base with Asp85 and Asp212, but those on the cytoplasmic side originate from steric conflict of the 13-methyl retinal group with Trp182 and distortion of the pi-bulge of helix G. The structural changes suggest that protonation of Asp85 initiates a cascade of atomic displacements in the extracellular region that cause release of a proton to the surface. The progressive relaxation of the strained 13-cis retinal chain with deprotonated Schiff base, in turn, initiates atomic displacements in the cytoplasmic region that cause the intercalation of a hydrogen-bonded water molecule between Thr46 and Asp96. This accounts for the lowering of the pK(a) of Asp96, which then reprotonates the Schiff base via a newly formed chain of water molecules that is extending toward the Schiff base.


Asunto(s)
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Retinaldehído/química , Retinaldehído/metabolismo , Sustitución de Aminoácidos , Bacteriorodopsinas/genética , Cristalografía por Rayos X , Citoplasma/química , Citoplasma/metabolismo , Enlace de Hidrógeno , Transporte Iónico , Isomerismo , Luz , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Estructura Secundaria de Proteína , Protones , Bases de Schiff/metabolismo , Electricidad Estática , Relación Estructura-Actividad , Agua/metabolismo
10.
J Gen Physiol ; 115(5): 571-82, 2000 May.
Artículo en Inglés | MEDLINE | ID: mdl-10779315

RESUMEN

Annexins are proteins that bind lipids in the presence of calcium. Though multiple functions have been proposed for annexins, there is no general agreement on what annexins do or how they do it. We have used the well-studied conductance probes nonactin, alamethicin, and tetraphenylborate to investigate how annexins alter the functional properties of planar lipid bilayers. We found that annexin XII reduces the nonactin-induced conductance to approximately 30% of its original value. Both negative lipid and approximately 30 microM Ca(2+) are required for the conductance reduction. The mutant annexin XIIs, E105K and E105K/K68A, do not reduce the nonactin conductance even though both bind to the membrane just as wild-type does. Thus, subtle changes in the interaction of annexins with the membrane seem to be important. Annexin V also reduces nonactin conductance in nearly the same manner as annexin XII. Pronase in the absence of annexin had no effect on the nonactin conductance. But when added to the side of the bilayer opposite that to which annexin was added, pronase increased the nonactin-induced conductance toward its pre-annexin value. Annexins also dramatically alter the conductance induced by a radically different probe, alamethicin. When added to the same side of the bilayer as alamethicin, annexin has virtually no effect, but when added trans to the alamethicin, annexin dramatically reduces the asymmetry of the I-V curve and greatly slows the kinetics of one branch of the curve without altering those of the other. Annexin also reduces the rate at which the hydrophobic anion, tetraphenylborate, crosses the bilayer. These results suggest that annexin greatly reduces the ability of small molecules to cross the membrane without altering the surface potential and that at least some fraction of the active annexin is accessible to pronase digestion from the opposite side of the membrane.


Asunto(s)
Anexina A5/metabolismo , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Alameticina/farmacología , Anexina A5/química , Anexina A5/genética , Calcio/farmacología , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Conductividad Eléctrica , Canales Iónicos/fisiología , Isomerismo , Macrólidos/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Mutagénesis Sitio-Dirigida/fisiología , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Cloruro de Sodio/farmacología , Tetrafenilborato/farmacocinética , Desacopladores/farmacología
11.
Biochemistry ; 39(10): 2475-83, 2000 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-10704197

RESUMEN

Annexins are a family of calcium- and phospholipid-binding proteins involved with numerous cellular processes including membrane fusion, ion channel activity, and heterocomplex formation with other proteins. The annexin XII (ANXB12) crystal structure presented evidence that calcium mediates the formation of a hexamer through a novel intermolecular calcium-binding site [Luecke et al. (1995) Nature 378, 512-515]. In an attempt to disrupt hexamerization, we mutated a conserved key ligand in the intermolecular calcium-binding site, Glu105, to lysine. Despite its occurrence in a new spacegroup, the 1.93 A resolution structure reveals a hexamer with the Lys105 epsilon-amino group nearly superimposable with the original intermolecular calcium position. Our analysis shows that the mutation is directly involved in stabilizing the hexamer. The local residues are reoriented to retain affinity between the two trimers via a pH-dependent switch residue, Glu76, which is now protonated, allowing it to form tandem hydrogen bonds with the backbone carbonyl and nitrogen atoms of Thr103 located across the trimer interface. The loss of the intermolecular calcium-binding site is recuperated by extensive hydrogen bonding favoring hexamer stabilization. The presence of this mutant structure provides further evidence for hexameric annexin XII, and possible in vivo roles are discussed.


Asunto(s)
Anexinas/química , Anexinas/genética , Ácido Glutámico/genética , Lisina/genética , Mutagénesis Sitio-Dirigida , Animales , Anexinas/metabolismo , Sitios de Unión/genética , Calcio/metabolismo , Secuencia Conservada , Cristalización , Hydra , Concentración de Iones de Hidrógeno , Electricidad Estática
12.
Biochemistry ; 39(11): 3015-22, 2000 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-10715122

RESUMEN

The functional hallmark of annexins is the ability to bind to the surface of phospholipid membranes in a reversible, Ca(2+)-dependent manner. We now report that human annexin V and hydra annexin XII reversibly bound to phospholipid vesicles in the absence of Ca(2+) at low pH; half-maximal vesicle association occurred at pH 5.3 and 5. 8, respectively. The following biochemical data support the hypothesis that these annexins insert into bilayers at mildly acidic pH. First, a photoactivatable reagent (3-trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine) which selectively labels proteins exposed to the hydrophobic domain of bilayers reacted with these annexins at pH 5.0 and below but not at neutral pH. Second, in a Triton X-114 partitioning assay, annexins V and XII act as integral membrane proteins at low pH and as hydrophilic proteins at neutral pH; in the presence of phospholipids half-maximal partitioning into detergent occurred at pH approximately 5.0. Finally, annexin V or XII formed single channels in phospholipid bilayers at low pH but not at neutral pH. A model is discussed in which the concentrations of H(+) and Ca(2+) regulate the reversible conversion of three forms of annexins-soluble, peripheral membrane, and transmembrane.


Asunto(s)
Anexina A5/química , Canales Iónicos/química , Membrana Dobles de Lípidos/química , Ácidos Alcanesulfónicos/química , Animales , Anexinas/química , Azirinas/química , Tampones (Química) , Humanos , Hydra , Concentración de Iones de Hidrógeno , Radioisótopos de Yodo , Morfolinas/química , Octoxinol , Fosfolípidos/química , Etiquetas de Fotoafinidad/química , Polietilenglicoles/química , Acetato de Sodio/química , Marcadores de Spin , Trometamina/química
13.
Science ; 286(5438): 255-61, 1999 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-10514362

RESUMEN

Crystal structures of the Asp96 to Asn mutant of the light-driven proton pump bacteriorhodopsin and its M photointermediate produced by illumination at ambient temperature have been determined to 1.8 and 2.0 angstroms resolution, respectively. The trapped photoproduct corresponds to the late M state in the transport cycle-that is, after proton transfer to Asp85 and release of a proton to the extracellular membrane surface, but before reprotonation of the deprotonated retinal Schiff base. Its density map describes displacements of side chains near the retinal induced by its photoisomerization to 13-cis,15-anti and an extensive rearrangement of the three-dimensional network of hydrogen-bonded residues and bound water that accounts for the changed pKa values (where Ka is the acid constant) of the Schiff base and Asp85. The structural changes detected suggest the means for conserving energy at the active site and for ensuring the directionality of proton translocation.


Asunto(s)
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Bombas de Protones/química , Bombas de Protones/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Citoplasma/química , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Transporte Iónico , Isomerismo , Luz , Modelos Moleculares , Fotólisis , Fotones , Mutación Puntual , Conformación Proteica , Estructura Secundaria de Proteína , Protones , Retinaldehído/química , Retinaldehído/metabolismo , Bases de Schiff , Termodinámica , Agua
14.
J Mol Biol ; 291(4): 899-911, 1999 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-10452895

RESUMEN

Th?e atomic structure of the light-driven ion pump bacteriorhodopsin and the surrounding lipid matrix was determined by X-ray diffraction of crystals grown in cubic lipid phase. In the extracellular region, an extensive three-dimensional hydrogen-bonded network of protein residues and seven water molecules leads from the buried retinal Schiff base and the proton acceptor Asp85 to the membrane surface. Near Lys216 where the retinal binds, transmembrane helix G contains a pi-bulge that causes a non-proline? kink. The bulge is stabilized by hydrogen-bonding of the main-chain carbonyl groups of Ala215 and Lys216 with two buried water molecules located between the Schiff base and the proton donor Asp96 in the cytoplasmic region. The results indicate extensive involvement of bound water molecules in both the structure and the function of this seven-helical membrane protein. A bilayer of 18 tightly bound lipid chains forms an annulus around the protein in the crystal. Contacts between the trimers in the membrane plane are mediated almost exclusively by lipids.


Asunto(s)
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Enlace de Hidrógeno , Lípidos/química , Modelos Moleculares , Conformación Proteica , Estructura Secundaria de Proteína , Retinaldehído/metabolismo , Bases de Schiff , Electricidad Estática
15.
J Biol Chem ; 273(35): 22453-7, 1998 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-9712869

RESUMEN

Annexins are soluble proteins that bind to membranes in the presence of Ca2+. Crystal structures have been determined for some soluble forms, but little is known about the important membrane-bound state. We employed site-directed spin labeling to demonstrate that 1) annexin XII assumes a trimer configuration similar to the crystal structure when bound to bilayers under physiological conditions; 2) trimer assembly on bilayers is remarkably rapid, occurring on a millisecond time scale, whereas subunit exchange requires hours; and 3) different annexins can mix to form heterotrimers. The rapid assembly and heterotrimer formation have important implications concerning the cellular functions of annexins.


Asunto(s)
Anexinas/metabolismo , Anexinas/química , Anexinas/genética , Membrana Celular/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Marcadores de Spin
16.
Science ; 280(5371): 1934-7, 1998 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-9632391

RESUMEN

Photoisomerization of the retinal of bacteriorhodopsin initiates a cyclic reaction in which a proton is translocated across the membrane. Studies of this protein promise a better understanding of how ion pumps function. Together with a large amount of spectroscopic and mutational data, the atomic structure of bacteriorhodopsin, determined in the last decade at increasing resolutions, has suggested plausible but often contradictory mechanisms. X-ray diffraction of bacteriorhodopsin crystals grown in cubic lipid phase revealed unexpected two-fold symmetries that indicate merohedral twinning along the crystallographic c axis. The structure, refined to 2.3 angstroms taking this twinning into account, is different from earlier models, including that most recently reported. One of the carboxyl oxygen atoms of the proton acceptor Asp85 is connected to the proton donor, the retinal Schiff base, through a hydrogen-bonded water and forms a second hydrogen bond with another water. The other carboxyl oxygen atom of Asp85 accepts a hydrogen bond from Thr89. This structure forms the active site. The nearby Arg82 is the center of a network of numerous hydrogen-bonded residues and an ordered water molecule. This network defines the pathway of the proton from the buried Schiff base to the extracellular surface.


Asunto(s)
Bacteriorodopsinas/química , Protones , Ácido Aspártico/química , Bacteriorodopsinas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Ligandos , Luz , Modelos Moleculares , Fotoquímica , Conformación Proteica , Estructura Secundaria de Proteína , Retinaldehído/química , Bases de Schiff/química , Agua
17.
Exp Parasitol ; 87(3): 203-11, 1997 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9371085

RESUMEN

Inosine-5'-monophosphate dehydrogenase (IMPDH) is an attractive drug target for the control of parasitic infections. The enzyme catalyzes the NAD-dependent oxidation of inosine monophosphate (IMP) to xanthosine monophosphate (XMP), the committed step in guanosine monophosphate (GMP) biosynthesis. We have determined the crystal structures of IMPDH from the protozoan parasite Tritrichomonas foetus in the apo form at 2.3 A resolution and the enzyme-XMP complex at 2.6 A resolution. The enzyme forms a cyclic (C4) homotetramer. The core domain of each monomer forms an eight-stranded parallel beta/alpha barrel with the enzyme active site at the C-termini of the barrel beta strands which lies near the center of the fourfold axis of the tetramer. While the electron-density for XMP in the complex structure is well-defined, the NAD cofactor and a nearby loop containing the catalytic cysteine (Cys-319) are disordered. This disorder at the active site suggests that a high degree of flexibility may be inherent to the catalytic function of IMPDH, making this area a difficult target for structure-based inhibitor design. Unlike IMPDHs from other species, the T. foetus enzyme coordinates the substrate phosphate with a single arginine guanidinium in the active site. Furthermore, a deep groove extends 8 A from the substrate phosphate away from the sugar. This structural uniqueness forms the basis of our efforts to design compounds that specifically inhibit the parasite enzyme.


Asunto(s)
Antiprotozoarios , Diseño de Fármacos , IMP Deshidrogenasa/química , Tritrichomonas foetus/enzimología , Animales , Sitios de Unión , Simulación por Computador , Cristalografía , IMP Deshidrogenasa/antagonistas & inhibidores , Modelos Moleculares , Conformación Proteica , Proyectos de Investigación , Ribonucleótidos/química , Xantina
18.
Biochemistry ; 36(35): 10666-74, 1997 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-9271497

RESUMEN

Inosine-5'-monophosphate dehydrogenase (IMPDH) is an attractive drug target for the control of parasitic infections. The enzyme catalyzes the oxidation of inosine monophosphate (IMP) to xanthosine monophosphate (XMP), the committed step in de novo guanosine monophosphate (GMP) biosynthesis. We have determined the crystal structures of IMPDH from the protozoan parasite Tritrichomonas foetus in the apo form at 2.3 A resolution and the enzyme-XMP complex at 2.6 A resolution. Each monomer of this tetrameric enzyme is comprised of two domains, the largest of which includes an eight-stranded parallel beta/alpha-barrel that contains the enzyme active site at the C termini of the barrel beta-strands. A second domain, comprised of residues 102-220, is disordered in the crystal. IMPDH is expected to be active as a tetramer, since the active site cavity is formed by strands from adjacent subunits. An intrasubunit disulfide bond, seen in the crystal structure, may stabilize the protein in a less active form, as high concentrations of reducing agent have been shown to increase enzyme activity. Disorder at the active site suggests that a high degree of flexibility may be inherent in the catalytic function of IMPDH. Unlike IMPDH from other species, the T. foetus enzyme has a single arginine that is largely responsible for coordinating the substrate phosphate in the active site. This structural uniqueness may facilitate structure-based identification and design of compounds that specifically inhibit the parasite enzyme.


Asunto(s)
IMP Deshidrogenasa/química , Proteínas Protozoarias/química , Tritrichomonas foetus/enzimología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Tritrichomonas foetus/química
19.
Biochemistry ; 36(29): 9045-50, 1997 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-9220993

RESUMEN

The annexins are a family of proteins that bind in a Ca2+-dependent manner to phospholipids that are preferentially located on the intracellular face of plasma membranes. Recent X-ray studies of hydra annexin XII showed that it crystallized as a homohexamer with an intermolecular Ca2+ binding site separate from the type II Ca2+-dependent phospholipid binding site. On the basis of this hexamer structure, a novel mechanism was proposed to explain how annexins interact with membranes. The first step toward evaluating this proposal is to determine whether the annexin XII hexamer exists when the protein is not in a crystalline form. We now report that annexin XII in solution can be cross-linked with dimethyl suberimidate into multimers with apparent Mr's corresponding to trimers and hexamers as determined by SDS--polyacrylamide gel electrophoresis--the trimer band may correspond to incompletely cross-linked hexamers. Multimer formation was dependent on Ca2+ and was enhanced when the protein first was bound to phospholipid vesicles. To evaluate the role of the intermolecular Ca2+ site in annexin XII hexamer formation, one of the residues used to coordinate Ca2+, glutamate 105, was replaced with lysine (E105K). In solution, the E105K mutation inhibited hexamer formation in the presence of moderate (3 mM) but not high (25 mM) Ca2+. No inhibition of E105K annexin XII hexamer formation was observed in the presence of phospholipid, thereby suggesting that either (i) other interactions are capable of stabilizing the hexamer when bound to bilayers or (ii) only trimers form on bilayers and the observed hexamer bands were due to cross-linking of closely packed trimers. In summary, this study shows for the first time that annexin XII can form hexamers in solution and implicates the intermolecular Ca2+ site in hexamer formation. This study also shows that multimers form on bilayers but does not clearly establish whether the multimers are trimers or hexamers.


Asunto(s)
Anexinas/metabolismo , Calcio/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Membrana Dobles de Lípidos/metabolismo , Fosfolípidos/metabolismo , Anexinas/química , Anexinas/genética , Dicroismo Circular , Cristalografía por Rayos X , Peso Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Soluciones , Relación Estructura-Actividad
20.
Nat Struct Biol ; 4(7): 519-22, 1997 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9228942

RESUMEN

A very short hydrogen bond between an Asp and a phosphate is established in two high resolution structures (0.98 and 1.05 A). A mutant complex that changes the Asp to an Asn, which forms a normal hydrogen bond, has a similar free energy of binding to the wild type complex, suggesting that the contribution of the short hydrogen bond is not extraordinarily strong.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Proteínas Portadoras/genética , Cristalografía por Rayos X , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Modelos Moleculares , Mutación , Proteínas de Unión a Fosfato , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA