Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trop Anim Health Prod ; 55(5): 300, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37723326

RESUMEN

This study aimed to predict Blackbelly sheep carcass tissue composition using ultrasound measurements and machine learning models. The models evaluated were decision trees, random forests, support vector machines, and multi-layer perceptrons and were used to predict the total carcass bone (TCB), total carcass fat (TCF), and total carcass muscle (TCM). The best model for predicting the three parameters, TCB, TCF, and TCM was random forests, with mean squared error (MSE) of 0.31, 0.33, and 0.53; mean absolute error (MAE) of 0.26, 0.29, and 0.53; and the coefficient of determination (R2) of 0.67, 0.69, and 0.76, respectively. The results showed that machine learning methods from in vivo ultrasound measurements can be used as determinants of carcass tissue composition, resulting in reliable results.


Asunto(s)
Aprendizaje Automático , Músculos , Animales , Ovinos , Ultrasonografía/veterinaria , Redes Neurales de la Computación , Bosques Aleatorios
2.
J Dairy Res ; 90(2): 138-141, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37139948

RESUMEN

Live weight (LW) is an important piece of information within production systems, as it is related to several other economic characteristics. However, in the main buffalo-producing regions in the world, it is not common to periodically weigh the animals. We develop and evaluate linear, quadratic, and allometric mathematical models to predict LW using the body volume (BV) formula in lactating water buffalo (Bubalus bubalis) reared in southeastern Mexico. The LW (391.5 ± 138.9 kg) and BV (333.62 ± 58.51 dm3) were measured in 165 lactating Murrah buffalo aged between 3 and 10 years. The goodness-of-fit of the models was evaluated using the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), coefficient of determination (R2), mean-squared error (MSE) and root MSE (RMSE). In addition, the developed models were evaluated through cross-validation (k-folds). The ability of the fitted models to predict the observed values was evaluated based on the RMSEP, R2, and mean absolute error (MAE). LW and BV were significantly positively and strongly correlated (r = 0.81; P < 0.001). The quadratic model had the lowest values of MSE (2788.12) and RMSE (52.80). On the other hand, the allometric model showed the lowest values of BIC (1319.24) and AIC (1313.07). The Quadratic and allometric models had lower values of MSEP and MAE. We recommend the quadratic and allometric models to predict the LW of lactating Murrah buffalo using BV as a predictor.


Asunto(s)
Búfalos , Lactancia , Femenino , Animales , Teorema de Bayes , México , Peso Corporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA