Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 32(4): 935-951, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38327047

RESUMEN

Angelman syndrome (AS), an early-onset neurodevelopmental disorder characterized by abnormal gait, intellectual disabilities, and seizures, occurs when the maternal allele of the UBE3A gene is disrupted, since the paternal allele is silenced in neurons by the UBE3A antisense (UBE3A-AS) transcript. Given the importance of early treatment, we hypothesized that prenatal delivery of an antisense oligonucleotide (ASO) would downregulate the murine Ube3a-AS, resulting in increased UBE3A protein and functional rescue. Using a mouse model with a Ube3a-YFP allele that reports on-target ASO activity, we found that in utero, intracranial (IC) injection of the ASO resulted in dose-dependent activation of paternal Ube3a, with broad biodistribution. Accordingly, in utero injection of the ASO in a mouse model of AS also resulted in successful restoration of UBE3A and phenotypic improvements in treated mice on the accelerating rotarod and fear conditioning. Strikingly, even intra-amniotic (IA) injection resulted in systemic biodistribution and high levels of UBE3A reactivation throughout the brain. These findings offer a novel strategy for early treatment of AS using an ASO, with two potential routes of administration in the prenatal window. Beyond AS, successful delivery of a therapeutic ASO into neurons has implications for a clinically feasible prenatal treatment for numerous neurodevelopmental disorders.


Asunto(s)
Síndrome de Angelman , Animales , Ratones , Síndrome de Angelman/terapia , Síndrome de Angelman/tratamiento farmacológico , Oligonucleótidos Antisentido/uso terapéutico , Distribución Tisular , Encéfalo/metabolismo , Fenotipo , Ubiquitina-Proteína Ligasas/genética , Modelos Animales de Enfermedad
2.
Science ; 372(6546): 1068-1073, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34083484

RESUMEN

Mammalian medial and lateral hippocampal networks preferentially process spatial- and object-related information, respectively. However, the mechanisms underlying the assembly of such parallel networks during development remain largely unknown. Our study shows that, in mice, complementary expression of cell surface molecules teneurin-3 (Ten3) and latrophilin-2 (Lphn2) in the medial and lateral hippocampal networks, respectively, guides the precise assembly of CA1-to-subiculum connections in both networks. In the medial network, Ten3-expressing (Ten3+) CA1 axons are repelled by target-derived Lphn2, revealing that Lphn2- and Ten3-mediated heterophilic repulsion and Ten3-mediated homophilic attraction cooperate to control precise target selection of CA1 axons. In the lateral network, Lphn2-expressing (Lphn2+) CA1 axons are confined to Lphn2+ targets via repulsion from Ten3+ targets. Our findings demonstrate that assembly of parallel hippocampal networks follows a "Ten3→Ten3, Lphn2→Lphn2" rule instructed by reciprocal repulsions.


Asunto(s)
Orientación del Axón , Axones/fisiología , Región CA1 Hipocampal/fisiología , Hipocampo/fisiología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Péptidos/metabolismo , Animales , Región CA1 Hipocampal/citología , Corteza Entorrinal/fisiología , Femenino , Hipocampo/citología , Ligandos , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones , Proteínas del Tejido Nervioso/genética , Vías Nerviosas , Receptores de Péptidos/genética , Transcriptoma
5.
Cell ; 184(2): 489-506.e26, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33338423

RESUMEN

Single-cell transcriptomics has been widely applied to classify neurons in the mammalian brain, while systems neuroscience has historically analyzed the encoding properties of cortical neurons without considering cell types. Here we examine how specific transcriptomic types of mouse prefrontal cortex (PFC) projection neurons relate to axonal projections and encoding properties across multiple cognitive tasks. We found that most types projected to multiple targets, and most targets received projections from multiple types, except PFC→PAG (periaqueductal gray). By comparing Ca2+ activity of the molecularly homogeneous PFC→PAG type against two heterogeneous classes in several two-alternative choice tasks in freely moving mice, we found that all task-related signals assayed were qualitatively present in all examined classes. However, PAG-projecting neurons most potently encoded choice in cued tasks, whereas contralateral PFC-projecting neurons most potently encoded reward context in an uncued task. Thus, task signals are organized redundantly, but with clear quantitative biases across cells of specific molecular-anatomical characteristics.


Asunto(s)
Cognición/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Análisis y Desempeño de Tareas , Animales , Calcio/metabolismo , Conducta de Elección , Señales (Psicología) , Imagenología Tridimensional , Integrasas/metabolismo , Ratones Endogámicos C57BL , Odorantes , Optogenética , Sustancia Gris Periacueductal/fisiología , Recompensa , Análisis de la Célula Individual , Transcriptoma/genética
6.
Nat Neurosci ; 23(12): 1456-1468, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32839617

RESUMEN

To understand the function of cortical circuits, it is necessary to catalog their cellular diversity. Past attempts to do so using anatomical, physiological or molecular features of cortical cells have not resulted in a unified taxonomy of neuronal or glial cell types, partly due to limited data. Single-cell transcriptomics is enabling, for the first time, systematic high-throughput measurements of cortical cells and generation of datasets that hold the promise of being complete, accurate and permanent. Statistical analyses of these data reveal clusters that often correspond to cell types previously defined by morphological or physiological criteria and that appear conserved across cortical areas and species. To capitalize on these new methods, we propose the adoption of a transcriptome-based taxonomy of cell types for mammalian neocortex. This classification should be hierarchical and use a standardized nomenclature. It should be based on a probabilistic definition of a cell type and incorporate data from different approaches, developmental stages and species. A community-based classification and data aggregation model, such as a knowledge graph, could provide a common foundation for the study of cortical circuits. This community-based classification, nomenclature and data aggregation could serve as an example for cell type atlases in other parts of the body.


Asunto(s)
Células/clasificación , Neocórtex/citología , Transcriptoma , Animales , Biología Computacional , Humanos , Neuroglía/clasificación , Neuronas/clasificación , Análisis de la Célula Individual , Terminología como Asunto
7.
Proc Natl Acad Sci U S A ; 117(20): 11068-11075, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32358193

RESUMEN

The projection targets of a neuronal population are a key feature of its anatomical characteristics. Historically, tissue sectioning, confocal microscopy, and manual scoring of specific regions of interest have been used to generate coarse summaries of mesoscale projectomes. We present here TrailMap, a three-dimensional (3D) convolutional network for extracting axonal projections from intact cleared mouse brains imaged by light-sheet microscopy. TrailMap allows region-based quantification of total axon content in large and complex 3D structures after registration to a standard reference atlas. The identification of axonal structures as thin as one voxel benefits from data augmentation but also requires a loss function that tolerates errors in annotation. A network trained with volumes of serotonergic axons in all major brain regions can be generalized to map and quantify axons from thalamocortical, deep cerebellar, and cortical projection neurons, validating transfer learning as a tool to adapt the model to novel categories of axonal morphology. Speed of training, ease of use, and accuracy improve over existing tools without a need for specialized computing hardware. Given the recent emphasis on genetically and functionally defining cell types in neural circuit analysis, TrailMap will facilitate automated extraction and quantification of axons from these specific cell types at the scale of the entire mouse brain, an essential component of deciphering their connectivity.


Asunto(s)
Axones , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Animales , Mapeo Encefálico/métodos , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/anatomía & histología , Red Nerviosa/diagnóstico por imagen , Redes Neurales de la Computación , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Neuronas
8.
Cereb Cortex ; 28(6): 1946-1958, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28449024

RESUMEN

The neocortex of primates, including humans, contains more abundant and diverse inhibitory neurons compared with rodents, but the molecular foundations of these observations are unknown. Through integrative gene coexpression analysis, we determined a consensus transcriptional profile of GABAergic neurons in mid-gestation human neocortex. By comparing this profile to genes expressed in GABAergic neurons purified from neonatal mouse neocortex, we identified conserved and distinct aspects of gene expression in these cells between the species. We show here that the calcium-binding protein secretagogin (SCGN) is robustly expressed by neocortical GABAergic neurons derived from caudal ganglionic eminences (CGE) and lateral ganglionic eminences during human but not mouse brain development. Through electrophysiological and morphometric analyses, we examined the effects of SCGN expression on GABAergic neuron function and form. Forced expression of SCGN in CGE-derived mouse GABAergic neurons significantly increased total neurite length and arbor complexity following transplantation into mouse neocortex, revealing a molecular pathway that contributes to morphological differences in these cells between rodents and primates.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Neocórtex/embriología , Neurogénesis/fisiología , Secretagoginas/metabolismo , Animales , Humanos , Interneuronas/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuritas/metabolismo , Transcriptoma
9.
Genome Biol ; 17: 67, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27081004

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) comprise a diverse class of transcripts that can regulate molecular and cellular processes in brain development and disease. LncRNAs exhibit cell type- and tissue-specific expression, but little is known about the expression and function of lncRNAs in the developing human brain. Furthermore, it has been unclear whether lncRNAs are highly expressed in subsets of cells within tissues, despite appearing lowly expressed in bulk populations. RESULTS: We use strand-specific RNA-seq to deeply profile lncRNAs from polyadenylated and total RNA obtained from human neocortex at different stages of development, and we apply this reference to analyze the transcriptomes of single cells. While lncRNAs are generally detected at low levels in bulk tissues, single-cell transcriptomics of hundreds of neocortex cells reveal that many lncRNAs are abundantly expressed in individual cells and are cell type-specific. Notably, LOC646329 is a lncRNA enriched in single radial glia cells but is detected at low abundance in tissues. CRISPRi knockdown of LOC646329 indicates that this lncRNA regulates cell proliferation. CONCLUSION: The discrete and abundant expression of lncRNAs among individual cells has important implications for both their biological function and utility for distinguishing neural cell types.


Asunto(s)
Células Ependimogliales/metabolismo , Neocórtex/embriología , ARN Largo no Codificante/genética , Análisis de la Célula Individual/métodos , Proliferación Celular , Células Ependimogliales/citología , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Neocórtex/metabolismo , Especificidad de Órganos , Embarazo , Análisis de Secuencia de ARN/métodos
10.
Nature ; 515(7526): 264-8, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25391964

RESUMEN

Evolutionary expansion of the human neocortex underlies many of our unique mental abilities. This expansion has been attributed to the increased proliferative potential of radial glia (RG; neural stem cells) and their subventricular dispersion from the periventricular niche during neocortical development. Such adaptations may have evolved through gene expression changes in RG. However, whether or how RG gene expression varies between humans and other species is unknown. Here we show that the transcriptional profiles of human and mouse neocortical RG are broadly conserved during neurogenesis, yet diverge for specific signalling pathways. By analysing differential gene co-expression relationships between the species, we demonstrate that the growth factor PDGFD is specifically expressed by RG in human, but not mouse, corticogenesis. We also show that the expression domain of PDGFRß, the cognate receptor for PDGFD, is evolutionarily divergent, with high expression in the germinal region of dorsal human neocortex but not in the mouse. Pharmacological inhibition of PDGFD-PDGFRß signalling in slice culture prevents normal cell cycle progression of neocortical RG in human, but not mouse. Conversely, injection of recombinant PDGFD or ectopic expression of constitutively active PDGFRß in developing mouse neocortex increases the proportion of RG and their subventricular dispersion. These findings highlight the requirement of PDGFD-PDGFRß signalling for human neocortical development and suggest that local production of growth factors by RG supports the expanded germinal region and progenitor heterogeneity of species with large brains.


Asunto(s)
Linfocinas/metabolismo , Neocórtex/metabolismo , Neuroglía/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Animales , Ciclo Celular , Proliferación Celular , Perfilación de la Expresión Génica , Humanos , Linfocinas/genética , Ratones , Neocórtex/citología , Neocórtex/crecimiento & desarrollo , Neuroglía/citología , Factor de Crecimiento Derivado de Plaquetas/genética , Transducción de Señal/genética , Transcripción Genética
11.
Cell Rep ; 8(3): 656-64, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25088420

RESUMEN

Evolutionary expansion of the human neocortex is partially attributed to a relative abundance of neural stem cells in the fetal brain called outer radial glia (oRG). oRG cells display a characteristic division mode, mitotic somal translocation (MST), in which the soma rapidly translocates toward the cortical plate immediately prior to cytokinesis. MST may be essential for progenitor zone expansion, but the mechanism of MST is unknown, hindering exploration of its function in development and disease. Here, we show that MST requires activation of the Rho effector ROCK and nonmuscle myosin II, but not intact microtubules, centrosomal translocation into the leading process, or calcium influx. MST is independent of mitosis and distinct from interkinetic nuclear migration and saltatory migration. Our findings suggest that disrupted MST may underlie neurodevelopmental diseases affecting the Rho-ROCK-myosin pathway and provide a foundation for future exploration of the role of MST in neocortical development, evolution, and disease.


Asunto(s)
Mitosis , Neocórtex/metabolismo , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Calcio/metabolismo , Células Cultivadas , Centrosoma/metabolismo , Feto , Humanos , Microtúbulos/metabolismo , Miosina Tipo II/metabolismo , Neocórtex/citología , Neocórtex/embriología , Células-Madre Neurales/citología , Neuroglía/citología , Quinasas Asociadas a rho/metabolismo
12.
Nat Biotechnol ; 32(10): 1053-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25086649

RESUMEN

Large-scale surveys of single-cell gene expression have the potential to reveal rare cell populations and lineage relationships but require efficient methods for cell capture and mRNA sequencing. Although cellular barcoding strategies allow parallel sequencing of single cells at ultra-low depths, the limitations of shallow sequencing have not been investigated directly. By capturing 301 single cells from 11 populations using microfluidics and analyzing single-cell transcriptomes across downsampled sequencing depths, we demonstrate that shallow single-cell mRNA sequencing (~50,000 reads per cell) is sufficient for unbiased cell-type classification and biomarker identification. In the developing cortex, we identify diverse cell types, including multiple progenitor and neuronal subtypes, and we identify EGR1 and FOS as previously unreported candidate targets of Notch signaling in human but not mouse radial glia. Our strategy establishes an efficient method for unbiased analysis and comparison of cell populations from heterogeneous tissue by microfluidic single-cell capture and low-coverage sequencing of many cells.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , ARN Mensajero/análisis , Análisis de Secuencia de ARN/métodos , Transducción de Señal/genética , Animales , Corteza Cerebral/metabolismo , Diseño de Equipo , Humanos , Ratones , Técnicas Analíticas Microfluídicas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/fisiología
13.
J Neurosci ; 34(7): 2559-70, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24523546

RESUMEN

The dramatic increase in neocortical size and folding during mammalian brain evolution has been attributed to the elaboration of the subventricular zone (SVZ) and the associated increase in neural progenitors. However, recent studies have shown that SVZ size and the abundance of resident progenitors do not directly predict cortical topography, suggesting that complex behaviors of the progenitors themselves may contribute to the overall size and shape of the adult cortex. Using time-lapse imaging, we examined the dynamic behaviors of SVZ progenitors in the ferret, a gyrencephalic carnivore, focusing our analysis on outer radial glial cells (oRGs). We identified a substantial population of oRGs by marker expression and their unique mode of division, termed mitotic somal translocation (MST). Ferret oRGs exhibited diverse behaviors in terms of division location, cleavage angle, and MST distance, as well as fiber orientation and dynamics. We then examined the human fetal cortex and found that a subset of human oRGs displayed similar characteristics, suggesting that diversity in oRG behavior may be a general feature. Similar to the human, ferret oRGs underwent multiple rounds of self-renewing divisions but were more likely to undergo symmetric divisions that expanded the oRG population, as opposed to producing intermediate progenitor cells (IPCs). Differences in oRG behaviors, including proliferative potential and daughter cell fates, may contribute to variations in cortical structure between mammalian species.


Asunto(s)
Neocórtex/embriología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Animales , División Celular , Hurones , Humanos , Inmunohistoquímica , Microscopía Confocal , Neocórtex/citología
14.
Nat Neurosci ; 16(11): 1576-87, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24097039

RESUMEN

GABAergic cortical interneurons underlie the complexity of neural circuits and are particularly numerous and diverse in humans. In rodents, cortical interneurons originate in the subpallial ganglionic eminences, but their developmental origins in humans are controversial. We characterized the developing human ganglionic eminences and found that the subventricular zone (SVZ) expanded massively during the early second trimester, becoming densely populated with neural stem cells and intermediate progenitor cells. In contrast with the cortex, most stem cells in the ganglionic eminence SVZ did not maintain radial fibers or orientation. The medial ganglionic eminence exhibited unique patterns of progenitor cell organization and clustering, and markers revealed that the caudal ganglionic eminence generated a greater proportion of cortical interneurons in humans than in rodents. On the basis of labeling of newborn neurons in slice culture and mapping of proliferating interneuron progenitors, we conclude that the vast majority of human cortical interneurons are produced in the ganglionic eminences, including an enormous contribution from non-epithelial SVZ stem cells.


Asunto(s)
Ventrículos Cerebrales/citología , Neuronas GABAérgicas/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Interneuronas/fisiología , Células Madre Multipotentes/fisiología , Neocórtex/embriología , Animales , Diferenciación Celular , Movimiento Celular , Feto , Humanos , Proteínas con Homeodominio LIM/metabolismo , Ratones , Neocórtex/anatomía & histología , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Cultivo de Órganos , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
15.
Nat Commun ; 4: 1665, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23575669

RESUMEN

The human neocortex is increased in size and complexity as compared with most other species. Neocortical expansion has recently been attributed to protracted neurogenesis by outer radial glial cells in the outer subventricular zone, a region present in humans but not in rodents. The mechanisms of human outer radial glial cell generation are unknown, but are proposed to involve division of ventricular radial glial cells; neural stem cells present in all developing mammals. Here we show that human ventricular radial glial cells produce outer radial glial cells and seed formation of the outer subventricular zone via horizontal divisions, which occur more frequently in humans than in rodents. We further find that outer radial glial cell mitotic behaviour is cell intrinsic, and that the basal fibre, inherited by outer radial glial cells after ventricular radial glial division, determines cleavage angle. Our results suggest that altered regulation of mitotic spindle orientation increased outer radial glial cell number, and ultimately neuronal number, during human brain evolution.


Asunto(s)
Neocórtex/citología , Neuroglía/citología , Huso Acromático , Humanos
16.
Curr Opin Neurobiol ; 22(5): 747-53, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22487088

RESUMEN

Recent discoveries concerning the architecture and cellular dynamics of the developing human brain are revealing new differences between mouse and human cortical development. In mice, neurons are produced by ventricular radial glial (RG) cells and subventricular zone intermediate progenitor (IP) cells. In the human cortex, both ventricular RG and highly motile outer RG cells generate IP cells, which undergo multiple rounds of transit amplification in the outer subventricular zone before producing neurons. This creates a more complex environment for neurogenesis and neuronal migration, adding new arenas in which neurodevelopmental disease gene mutation could disrupt corticogenesis. A more complete understanding of disease mechanisms will involve use of emerging model systems with developmental programs more similar to that of the human neocortex.


Asunto(s)
Corteza Cerebral/anatomía & histología , Ventrículos Cerebrales/citología , Neurogénesis/fisiología , Neuroglía/fisiología , Células Madre/fisiología , Animales , Encefalopatías/patología , Diferenciación Celular , Movimiento Celular , Corteza Cerebral/crecimiento & desarrollo , Humanos , Ratones , Microtúbulos/metabolismo
17.
Neuron ; 72(2): 191-3, 2011 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-22017981

RESUMEN

Cleavage plane orientation has been thought to govern the fate of neural stem cell progeny, but supporting evidence in the neocortex has been sparse. A new study by Postiglione et al. in this issue of Neuron shows that mouse Inscuteable-mediated control of cleavage plane orientation regulates the output of neural progenitor cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Linaje de la Célula/fisiología , Polaridad Celular/fisiología , Neocórtex/crecimiento & desarrollo , Neurogénesis/fisiología , Neuronas/metabolismo , Huso Acromático/metabolismo , Animales
18.
Cell ; 146(1): 18-36, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21729779

RESUMEN

The size and surface area of the mammalian brain are thought to be critical determinants of intellectual ability. Recent studies show that development of the gyrated human neocortex involves a lineage of neural stem and transit-amplifying cells that forms the outer subventricular zone (OSVZ), a proliferative region outside the ventricular epithelium. We discuss how proliferation of cells within the OSVZ expands the neocortex by increasing neuron number and modifying the trajectory of migrating neurons. Relating these features to other mammalian species and known molecular regulators of the mouse neocortex suggests how this developmental process could have emerged in evolution.


Asunto(s)
Evolución Biológica , Neocórtex/fisiología , Animales , Movimiento Celular , Humanos , Neocórtex/citología , Neocórtex/embriología , Células-Madre Neurales/citología , Neurogénesis , Receptores Notch/metabolismo , Transducción de Señal
19.
Nature ; 464(7288): 554-561, 2010 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-20154730

RESUMEN

Neurons in the developing rodent cortex are generated from radial glial cells that function as neural stem cells. These epithelial cells line the cerebral ventricles and generate intermediate progenitor cells that migrate into the subventricular zone (SVZ) and proliferate to increase neuronal number. The developing human SVZ has a massively expanded outer region (OSVZ) thought to contribute to cortical size and complexity. However, OSVZ progenitor cell types and their contribution to neurogenesis are not well understood. Here we show that large numbers of radial glia-like cells and intermediate progenitor cells populate the human OSVZ. We find that OSVZ radial glia-like cells have a long basal process but, surprisingly, are non-epithelial as they lack contact with the ventricular surface. Using real-time imaging and clonal analysis, we demonstrate that these cells can undergo proliferative divisions and self-renewing asymmetric divisions to generate neuronal progenitor cells that can proliferate further. We also show that inhibition of Notch signalling in OSVZ progenitor cells induces their neuronal differentiation. The establishment of non-ventricular radial glia-like cells may have been a critical evolutionary advance underlying increased cortical size and complexity in the human brain.


Asunto(s)
Diferenciación Celular , Neocórtex/citología , Neocórtex/embriología , Neurogénesis/fisiología , Neuroglía/citología , Animales , Células Cultivadas , Humanos , Neuronas/citología , Receptores Notch/antagonistas & inhibidores , Transducción de Señal , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...